642 research outputs found

    Souffrance et liberté dans Une odeur de henné de Cécile Oumhani

    Get PDF

    Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.)

    Full text link
    [EN] The digestive tract, particularly the intestine, represents one of the main sites of interactions with the environment, playing the gut mucosa a crucial role in the digestion and absorption of nutrients, and in the immune defence. Previous researches have proven that the fishmeal replacement by plant sources could have an impact on the intestinal status at both digestive and immune level, compromising relevant productive parameters, such as feed efficiency, growth or survival. In order to evaluate the long-term impact of total fishmeal replacement on intestinal mucosa, the gut mucosa proteome was analysed in fish fed with a fishmeal-based diet, against plant protein-based diets with or without alternative marine sources inclusion. Total fishmeal replacement without marine ingredients inclusion, reported a negative impact in growth and biometric parameters, further an altered gut mucosa proteome. However, the inclusion of a low percentage of marine ingredients in plant protein-based diets was able to maintain the growth, biometrics parameters and gut mucosa proteome with similar values to FM group. A total fishmeal replacement induced a big set of underrepresented proteins in relation to several biological processes such as intracellular transport, assembly of cellular macrocomplex, protein localization and protein catabolism, as well as several molecular functions, mainly related with binding to different molecules and the maintenance of the cytoskeleton structure. The set of downregulated proteins also included molecules which have a crucial role in the maintenance of the normal function of the enterocytes, and therefore, of the epithelium, including permeability, immune and inflammatory response regulation and nutritional absorption. Possibly, the amino acid imbalance presented in VM diet, in a long-term feeding, may be the main reason of these alterations, which can be prevented by the inclusion of 15% of alternative marine sources. Significance: Long-term feeding with plant protein based diets may be considered as a stress factor and lead to a negative impact on digestive and immune system mechanisms at the gut, that can become apparent in a reduced fish performance. The need for fishmeal replacement by alternative ingredients such as plant sources to ensure the sustainability of the aquaculture sector has led the research assessing the intestinal status of fish to be of increasing importance. This scientific work provides further knowledge about the proteins and biologic processes altered in the gut in response to plant protein based diets, suggesting the loss of part of gut mucosa functionality. Nevertheless, the inclusion of alternative marine ingredients was able to reverse these negative effects, showing as a feasible option to develop sustainable aquafeeds.The first author was supported by a contract-grant (Contrato Pre doctoral para la Formacion de Profesorado Universitario) from Subprogramas de Formacion y Movilidad within the Programa Estatal de Promocion del Talento y su Empleabilidad of the Ministerio de Educacion, Cultura y Deporte of Spain.Estruch, G.; Martínez-Llorens, S.; Tomas-Vidal, A.; Monge-Ortiz, R.; Jover Cerda, M.; Brown, PB.; Peñaranda, D. (2020). Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). Journal of Proteomics. 216:1-13. https://doi.org/10.1016/j.jprot.2020.103672S113216Martínez-Llorens, S., Moñino, A. V., Tomás Vidal, A., Salvador, V. J. M., Pla Torres, M., & Jover Cerdá, M. (2007). Soybean meal as a protein source in gilthead sea bream (Sparus aurata L.) diets: effects on growth and nutrient utilization. Aquaculture Research, 38(1), 82-90. doi:10.1111/j.1365-2109.2006.01637.xMoutinho, S., Martínez-Llorens, S., Tomás-Vidal, A., Jover-Cerdá, M., Oliva-Teles, A., & Peres, H. (2017). Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream ( Sparus aurata ) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture, 468, 271-277. doi:10.1016/j.aquaculture.2016.10.024Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., … Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12-20. doi:10.1016/j.anifeedsci.2017.02.007Nengas, I., Alexis, M. N., & Davies, S. J. (1999). High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L. Aquaculture, 179(1-4), 13-23. doi:10.1016/s0044-8486(99)00148-9Monge-Ortiz, R., Martínez-Llorens, S., Márquez, L., Moyano, F. J., Jover-Cerdá, M., & Tomás-Vidal, A. (2016). Potential use of high levels of vegetal proteins in diets for market-sized gilthead sea bream (Sparus aurata). Archives of Animal Nutrition, 70(2), 155-172. doi:10.1080/1745039x.2016.1141743Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Effect of fish meal replacement by plant protein sources on non-specific defence mechanisms and oxidative stress in gilthead sea bream (Sparus aurata). Aquaculture, 249(1-4), 387-400. doi:10.1016/j.aquaculture.2005.03.031Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J., & Gallardo, M. A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture, 282(1-4), 68-74. doi:10.1016/j.aquaculture.2008.06.007Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology, 173(1-2), 111-133. doi:10.1016/j.anifeedsci.2011.12.015Minghetti, M., Drieschner, C., Bramaz, N., Schug, H., & Schirmer, K. (2017). A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biology and Toxicology, 33(6), 539-555. doi:10.1007/s10565-017-9385-xGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish: Table 1. FEMS Immunology & Medical Microbiology, 52(2), 145-154. doi:10.1111/j.1574-695x.2007.00343.xYu, Y., Sitaraman, S., & Gewirtz, A. T. (2004). Intestinal Epithelial Cell Regulation of Mucosal Inflammation. Immunologic Research, 29(1-3), 055-068. doi:10.1385/ir:29:1-3:055Ivanov, A. I., Parkos, C. A., & Nusrat, A. (2010). Cytoskeletal Regulation of Epithelial Barrier Function During Inflammation. The American Journal of Pathology, 177(2), 512-524. doi:10.2353/ajpath.2010.100168Lokman, P., & Symonds, J. (2014). Molecular and biochemical tricks of the research trade: -omics approaches in finfish aquaculture. New Zealand Journal of Marine and Freshwater Research, 48(3), 492-505. doi:10.1080/00288330.2014.928333Forné, I., Abián, J., & Cerdà, J. (2009). Fish proteome analysis: Model organisms and non-sequenced species. PROTEOMICS, 10(4), 858-872. doi:10.1002/pmic.200900609Rodrigues, P. M., Silva, T. S., Dias, J., & Jessen, F. (2012). PROTEOMICS in aquaculture: Applications and trends. Journal of Proteomics, 75(14), 4325-4345. doi:10.1016/j.jprot.2012.03.042Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837-846. doi:10.1038/35015709Karpievitch, Y. V., Polpitiya, A. D., Anderson, G. A., Smith, R. D., & Dabney, A. R. (2010). Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. The Annals of Applied Statistics, 4(4). doi:10.1214/10-aoas341Ahmed, F., Kumar, G., Soliman, F. M., Adly, M. A., Soliman, H. A. M., El-Matbouli, M., & Saleh, M. (2019). Proteomics for understanding pathogenesis, immune modulation and host pathogen interactions in aquaculture. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 32, 100625. doi:10.1016/j.cbd.2019.100625Sissener, N. H., Martin, S. A. M., Cash, P., Hevrøy, E. M., Sanden, M., & Hemre, G.-I. (2009). Proteomic Profiling of Liver from Atlantic Salmon (Salmo salar) Fed Genetically Modified Soy Compared to the Near-Isogenic non-GM Line. Marine Biotechnology, 12(3), 273-281. doi:10.1007/s10126-009-9214-1Morais, S., Silva, T., Cordeiro, O., Rodrigues, P., Guy, D. R., Bron, J. E., … Tocher, D. R. (2012). Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics, 13(1), 448. doi:10.1186/1471-2164-13-448Martin, S. A. M., Cash, P., Blaney, S., & Houlihan, D. F. (2001). Fish Physiology and Biochemistry, 24(3), 259-270. doi:10.1023/a:1014015530045Martin, S. A. M., Vilhelmsson, O., Médale, F., Watt, P., Kaushik, S., & Houlihan, D. F. (2003). Proteomic sensitivity to dietary manipulations in rainbow trout. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1651(1-2), 17-29. doi:10.1016/s1570-9639(03)00231-0Vilhelmsson, O. T., Martin, S. A. M., Médale, F., Kaushik, S. J., & Houlihan, D. F. (2004). Dietary plant-protein substitution affects hepatic metabolism in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 92(1), 71-80. doi:10.1079/bjn20041176Kumar, G., Hummel, K., Razzazi-Fazeli, E., & El-Matbouli, M. (2019). Modulation of posterior intestinal mucosal proteome in rainbow trout (Oncorhynchus mykiss) after Yersinia ruckeri infection. Veterinary Research, 50(1). doi:10.1186/s13567-019-0673-8Rajan, B., Lokesh, J., Kiron, V., & Brinchmann, M. F. (2013). Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Veterinary Research, 9(1). doi:10.1186/1746-6148-9-103Saleh, M., Kumar, G., Abdel-Baki, A.-A., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2018). Quantitative shotgun proteomics distinguishes wound-healing biomarker signatures in common carp skin mucus in response to Ichthyophthirius multifiliis. Veterinary Research, 49(1). doi:10.1186/s13567-018-0535-9Saleh, M., Kumar, G., Abdel-Baki, A.-A. S., Dkhil, M. A., El-Matbouli, M., & Al-Quraishy, S. (2019). Quantitative proteomic profiling of immune responses to Ichthyophthirius multifiliis in common carp skin mucus. Fish & Shellfish Immunology, 84, 834-842. doi:10.1016/j.fsi.2018.10.078ENYU, Y.-L., & SHU-CHIEN, A. C. (2011). Proteomics analysis of mitochondrial extract from liver of female zebrafish undergoing starvation and refeeding. Aquaculture Nutrition, 17(2), e413-e423. doi:10.1111/j.1365-2095.2010.00776.xBoonanuntanasarn, S., Nakharuthai, C., Schrama, D., Duangkaew, R., & Rodrigues, P. M. (2019). Effects of dietary lipid sources on hepatic nutritive contents, fatty acid composition and proteome of Nile tilapia (Oreochromis niloticus). Journal of Proteomics, 192, 208-222. doi:10.1016/j.jprot.2018.09.003Ghisaura, S., Anedda, R., Pagnozzi, D., Biosa, G., Spada, S., Bonaglini, E., … Addis, M. F. (2014). Impact of three commercial feed formulations on farmed gilthead sea bream (Sparus aurata, L.) metabolism as inferred from liver and blood serum proteomics. Proteome Science, 12(1). doi:10.1186/s12953-014-0044-3Sabbagh, M., Schiavone, R., Brizzi, G., Sicuro, B., Zilli, L., & Vilella, S. (2019). Poultry by-product meal as an alternative to fish meal in the juvenile gilthead seabream (Sparus aurata) diet. Aquaculture, 511, 734220. doi:10.1016/j.aquaculture.2019.734220Piazzon, M. C., Calduch-Giner, J. A., Fouz, B., Estensoro, I., Simó-Mirabet, P., Puyalto, M., … Pérez-Sánchez, J. (2017). Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 5(1). doi:10.1186/s40168-017-0390-3Wulff, T., Petersen, J., Nørrelykke, M. R., Jessen, F., & Nielsen, H. H. (2012). Proteome Analysis of Pyloric Ceca: A Methodology for Fish Feed Development? Journal of Agricultural and Food Chemistry, 60(34), 8457-8464. doi:10.1021/jf3016943Pérez-Sánchez, J., Estensoro, I., Redondo, M. J., Calduch-Giner, J. A., Kaushik, S., & Sitjà-Bobadilla, A. (2013). Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis. PLoS ONE, 8(6), e65457. doi:10.1371/journal.pone.0065457Mirghaed, A. T., Yarahmadi, P., Soltani, M., Paknejad, H., & Hoseini, S. M. (2019). Dietary sodium butyrate (Butirex® C4) supplementation modulates intestinal transcriptomic responses and augments disease resistance of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 92, 621-628. doi:10.1016/j.fsi.2019.06.046Estruch, G., Tomás-Vidal, A., El Nokrashy, A. M., Monge-Ortiz, R., Godoy-Olmos, S., Jover Cerdá, M., & Martínez-Llorens, S. (2018). Inclusion of alternative marine by-products in aquafeeds with different levels of plant-based sources for on-growing gilthead sea bream (Sparus aurata, L.): effects on digestibility, amino acid retention, ammonia excretion and enzyme activity. Archives of Animal Nutrition, 72(4), 321-339. doi:10.1080/1745039x.2018.1472408Peres, H., & Oliva-Teles, A. (2009). The optimum dietary essential amino acid profile for gilthead seabream (Sparus aurata) juveniles. Aquaculture, 296(1-2), 81-86. doi:10.1016/j.aquaculture.2009.04.046Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann, M. (2014). Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics, 13(9), 2513-2526. doi:10.1074/mcp.m113.031591Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57. doi:10.1038/nprot.2008.211Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1-13. doi:10.1093/nar/gkn923Kader, M. A., Bulbul, M., Koshio, S., Ishikawa, M., Yokoyama, S., Nguyen, B. T., & Komilus, C. F. (2012). Effect of complete replacement of fishmeal by dehulled soybean meal with crude attractants supplementation in diets for red sea bream, Pagrus major. Aquaculture, 350-353, 109-116. doi:10.1016/j.aquaculture.2012.04.009HERBINGER, C. M., & FRIARS, G. W. (1991). Correlation between condition factor and total lipid content in Atlantic salmon, Salmo salar L., parr. Aquaculture Research, 22(4), 527-529. doi:10.1111/j.1365-2109.1991.tb00766.xJohansson, L., Kiessling, A., Kiessling, K.-H., & Berglund, L. (2000). Effects of altered ration levels on sensory characteristics, lipid content and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Food Quality and Preference, 11(3), 247-254. doi:10.1016/s0950-3293(99)00073-7De Francesco, M., Parisi, G., Médale, F., Lupi, P., Kaushik, S. J., & Poli, B. M. (2004). Effect of long-term feeding with a plant protein mixture based diet on growth and body/fillet quality traits of large rainbow trout (Oncorhynchus mykiss). Aquaculture, 236(1-4), 413-429. doi:10.1016/j.aquaculture.2004.01.006Berg, O. K., Thronæs, E., & Bremset, G. (1998). Energetics and survival of virgin and repeat spawning brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 55(1), 47-53. doi:10.1139/f97-208Saera-Vila, A., Calduch-Giner, J. A., Gómez-Requeni, P., Médale, F., Kaushik, S., & Pérez-Sánchez, J. (2005). Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(2), 224-232. doi:10.1016/j.cbpb.2005.07.009Panserat, S., & Kaushik, S. J. (2010). Regulation of gene expression by nutritional factors in fish. Aquaculture Research, 41(5), 751-762. doi:10.1111/j.1365-2109.2009.02173.xKhurana, S., & George, S. P. (2008). Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Letters, 582(14), 2128-2139. doi:10.1016/j.febslet.2008.02.040Bedford, L., Paine, S., Sheppard, P. W., Mayer, R. J., & Roelofs, J. (2010). Assembly, structure, and function of the 26S proteasome. Trends in Cell Biology, 20(7), 391-401. doi:10.1016/j.tcb.2010.03.007Wu, Y.-X., Yang, J.-H., & Saitsu, H. (2016). Bortezomib-resistance is associated with increased levels of proteasome subunits and apoptosis-avoidance. Oncotarget, 7(47), 77622-77634. doi:10.18632/oncotarget.12731Fararjeh, Chen, Ho, Cheng, Liu, Chang, … Tu. (2019). Proteasome 26S Subunit, non-ATPase 3 (PSMD3) Regulates Breast Cancer by Stabilizing HER2 from Degradation. Cancers, 11(4), 527. doi:10.3390/cancers11040527Pastorelli, L., De Salvo, C., Mercado, J. R., Vecchi, M., & Pizarro, T. T. (2013). Central Role of the Gut Epithelial Barrier in the Pathogenesis of Chronic Intestinal Inflammation: Lessons Learned from Animal Models and Human Genetics. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00280Babbin, B. A., Laukoetter, M. G., Nava, P., Koch, S., Lee, W. Y., Capaldo, C. T., … Nusrat, A. (2008). Annexin A1 Regulates Intestinal Mucosal Injury, Inflammation, and Repair. The Journal of Immunology, 181(7), 5035-5044. doi:10.4049/jimmunol.181.7.5035Leoni, G., Neumann, P.-A., Sumagin, R., Denning, T. L., & Nusrat, A. (2015). Wound repair: role of immune–epithelial interactions. Mucosal Immunology, 8(5), 959-968. doi:10.1038/mi.2015.63Bakke-McKellep, A. M., Penn, M. H., Salas, P. M., Refstie, S., Sperstad, S., Landsverk, T., … Krogdahl, Å. (2007). Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 97(4), 699-713. doi:10.1017/s0007114507381397Wolf, H. K., & Dittrich, K. L. (1992). Detection of proliferating cell nuclear antigen in diagnostic histopathology. Journal of Histochemistry & Cytochemistry, 40(9), 1269-1273. doi:10.1177/40.9.1354677Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metabolism, 25(1), 27-42. doi:10.1016/j.cmet.2016.08.009Cunningham, K. E., & Turner, J. R. (2012). Myosin light chain kinase: pulling the strings of epithelial tight junction function. Annals of the New York Academy of Sciences, 1258(1), 34-42. doi:10.1111/j.1749-6632.2012.06526.xFanning, A. S., & Anderson, J. M. (1999). PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. Journal of Clinical Investigation, 103(6), 767-772. doi:10.1172/jci6509Werner, T., & Haller, D. (2007). Intestinal epithelial cell signalling and chronic inflammation: From the proteome to specific molecular mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 622(1-2), 42-57. doi:10.1016/j.mrfmmm.2007.05.010Lee, S. H. (2015). Intestinal Permeability Regulation by Tight Junction: Implication on Inflammatory Bowel Diseases. Intestinal Research, 13(1), 11. doi:10.5217/ir.2015.13.1.11Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology, 9(11), 799-809. doi:10.1038/nri2653Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., Wells, J. M., & Roy, N. C. (2011). Regulation of Tight Junction Permeability by Intestinal Bacteria and Dietary Components. The Journal of Nutrition, 141(5), 769-776. doi:10.3945/jn.110.135657Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., & Frøkiær, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 100(1), 120-129. doi:10.1017/s0007114507886338Hu, H., Kortner, T. M., Gajardo, K., Chikwati, E., Tinsley, J., & Krogdahl, Å. (2016). Intestinal Fluid Permeability in Atlantic Salmon (Salmo salar L.) Is Affected by Dietary Protein Source. PLOS ONE, 11(12), e0167515. doi:10.1371/journal.pone.0167515Strober, W., Fuss, I. J., & Blumberg, R. S. (2002). The Immunology of Mucosal Models of Inflammation. Annual Review of Immunology, 20(1), 495-549. doi:10.1146/annurev.immunol.20.100301.064816Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis. Cell, 118(2), 229-241. doi:10.1016/j.cell.2004.07.002Neal, M. D., Leaphart, C., Levy, R., Prince, J., Billiar, T. R., Watkins, S., … Hackam, D. J. (2006). Enterocyte TLR4 Mediates Phagocytosis and Translocation of Bacteria Across the Intestinal Barrier. The Journal of Immunology, 176(5), 3070-3079. doi:10.4049/jimmunol.176.5.3070Fink, M. P., & Delude, R. L. (2005). Epithelial Barrier Dysfunction: A Unifying Theme to Explain the Pathogenesis of Multiple Organ Dysfunction at the Cellular Level. Critical Care Clinics, 21(2), 177-196. doi:10.1016/j.ccc.2005.01.005Estruch, G., Collado, M. C., Peñaranda, D. S., Tomás Vidal, A., Jover Cerdá, M., Pérez Martínez, G., & Martinez-Llorens, S. (2015). Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequ

    Reflecting on One Health in Action During the COVID-19 Response

    Get PDF
    The COVID-19 pandemic, a singular disruptive event in recent human history, has required rapid, innovative, coordinated and collaborative approaches to manage and ameliorate its worst impacts. However, the threat remains, and learning from initial efforts may benefit the response management in the future. One Health approaches to managing health challenges through multi-stakeholder engagement are underscored by an enabling environment. Here we describe three case studies from state (New South Wales, Australia), national (Ireland), and international (sub-Saharan Africa) scales which illustrate different aspects of One Health in action in response to the COVID-19 pandemic. In Ireland, a One Health team was assembled to help parameterise complex mathematical and resource models. In New South Wales, state authorities engaged collaboratively with animal health veterinarians and epidemiologists to leverage disease outbreak knowledge, expertise and technical and support structures for application to the COVID-19 emergency. The African One Health University Network linked members from health institutions and universities from eight countries to provide a virtual platform knowledge exchange on COVID-19 to support the response. Themes common to successful experiences included a shared resource base, interdisciplinary engagement, communication network strategies, and looking global to address local need. The One Health approaches used, particularly shared responsibility and knowledge integration, are benefiting the management of this pandemic and future One Health global challenges

    Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens

    Get PDF
    The analysis of human pathogens requires a diverse collection of bioinformatics tools. These tools include standard genomic and phylogenetic software and custom software developed to handle the relatively numerous and short genomes of viruses and bacteria. Researchers increasingly depend on the outputs of these tools to infer transmission dynamics of human diseases and make actionable recommendations to public health officials (Black et al., 2020; Gardy et al., 2015). In order to enable real-time analyses of pathogen evolution, bioinformatics tools must scale rapidly with the number of samples and be flexible enough to adapt to a variety of questions and organisms. To meet these needs, we developed Augur, a bioinformatics toolkit designed for phylogenetic analyses of human pathogens

    The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia

    Get PDF
    Article number: 1610 (2018)[EN]Brain preconditioning (PC) refers to a state of transient tolerance against a lethal insult that can be evoked by a prior mild event. It is thought that PC may induce different pathways responsible for neuroprotection, which may involve the attenuation of cell damage pathways, including the apoptotic cell death. In this context, p53 is a stress sensor that accumulates during brain ischemia leading to neuronal death. The murine double minute 2 gene (MDM2), a p53-specific E3 ubiquitin ligase, is the main cellular antagonist of p53, mediating its degradation by the proteasome. Here, we study the role of MDM2-p53 pathway on PC-induced neuroprotection both in cultured neurons (in vitro) and rat brain (in vivo). Our results show that PC increased neuronal MDM2 protein levels, which prevented ischemia-induced p53 stabilization and neuronal death. Indeed, PC attenuated ischemia-induced activation of the p53/PUMA/caspase-3 signaling pathway. Pharmacological inhibition of MDM2-p53 interaction in neurons abrogated PC-induced neuroprotection against ischemia. Finally, the relevance of the MDM2-p53 pathway was confirmed in rat brain using a PC model in vivo. These findings demonstrate the key role of the MDM2-p53 pathway in PC-induced neuroprotection against a subsequent ischemic insult and poses MDM2 as an essential target in ischemic tolerance

    A Multi-APD readout for EL detectors

    Full text link
    Detectors with an electroluminesence readout show an excellence performance in respect of energy resolution making them interesting for various applications as X-ray detection, double beta and dark matter experiments, Compton and gamma cameras, etc. In the following the study of a readout based on avalanche photo diodes to detect directly the VUV photons is presented. Results of measurements with 5 APDs in xenon at pressures between 1 and 1.65 bar are shown indicating that such a readout can provide excellent energy and a moderate position resolution.Comment: Talk given at the 5th Symposium on Large TPCs for Low Energy Rare Events. Submitted to JPCS (Journal of Physics: Conference Series) for publication. 8 pages, 17 figure

    Filipino Students’ Standpoint on Going Back to Traditional Schooling in the New Normal

    Get PDF
    Schools worldwide have started opening doors to welcome back students who, for almost two years, have been stuck studying at home. This study looks at the standpoint of Filipino students on going back to regular face-to-face schooling. There were 2,274 students of different tiers of education (high school, collegiate, graduate) from different major island groups of the Philippines (Luzon, Visayas, Mindanao) who participated in the study. The study used a mixed-method of descriptive statistics to present the quantitative data gathered and thematic analysis of qualitative responses from the subjects. The majority of all the respondents favored going back to the physical classroom, and little only favored staying using the distance mode. In the qualitative analysis, the recurring reasons of the students varied from personal, economic, and fear of getting the virus. It was concluded that Filipino students want to go back to schooling. Moreover, a sizeable amount preferred hybrid while a small number preferred to stay in online or distance mode. Educational institutions should always observe the covid 19 protocol when students go back

    Preventing and addressing the stress reactions of health care workers caring for patients with COVID-19: Development of a digital platform (Be + against COVID)

    Get PDF
    Background: COVID-19 became a major public health concern in March 2020. Due to the high rate of hospitalizations for COVID-19 in a short time, health care workers and other involved staff are subjected to a large workload and high emotional distress. Objective: The objective of this study is to develop a digital tool to provide support resources that might prevent and consider acute stress reactions in health care workers and other support staff due to the COVID-19 pandemic. Methods: The contents of the digital platform were created through an evidence-based review and consensus conference. The website was built using the Google Blogger tool. The Android version of the app was developed in the Java and XML languages using Android Studio version 3.6, and the iOS version was developed in the Swift language using Xcode version 11.5. The app was evaluated externally by the Andalusian Agency for Healthcare Quality. Results: We detected the needs and pressing situations of frontline health care workers, and then, we proposed a serial of recommendations and support resources to address them. These resources were redesigned using the feedback received. A website in three different languages (Spanish, English, and Portuguese) and a mobile app were developed with these contents, and the AppSaludable Quality Seal was granted to the app. A specific self-report scale to measure acute stress and additional tools were included to support the health care workforce. This instrument has been used in several Latin American countries and has been adapted considering cultural differences. The resources section of the website was the most visited with 18, 516 out of 68, 913 (26.9%) visits, and the “Self-Report Acute Stress Scale” was the most visited resource with 6468 out of 18, 516 (34.9%) visits. Conclusions: The Be + against COVID platform (website and app) was developed and launched to offer a pool of recommendations and support resources, which were specifically designed to protect the psychological well-being and the work morale of health care workers. This is an original initiative different from the usual psychological assistance hotlines

    ¿Vamos a la Huerta? : Recuperación de saberes culturales alrededor de la producción agroecológica de alimentos

    Get PDF
    Con el avance de la agricultura industrial, los pueblos rurales fueron vaciados de saberes culturales, como es la autoproducción de alimentos. Gobernador Ugarte, ubicado en el partido de 25 de Mayo, provincia de Buenos Aires, Argentina, no escapa a esta problemática ambiental, social y cultural, agravada por el hecho de que no tiene verdulerías, que las pocas verduras y frutas que llegan son muy caras y; que la ciudad más próxima queda a 40km. Contrariamente a lo que se piensa en las ciudades, los vecinos no saben hacer huertas, porque se perdió la transmisión cultural de boca a oreja sobre la producción de alimentos. ¿Vamos a la Huerta?, es una propuesta lúdica y comunicacional para el aprendizaje de producción de hortalizas con bases agroecológicas, que se inició en el año 2008, y que realizan los alumnos del ciclo superior de la Escuela Secundaria, los cuales diseñan juegos para que los alumnos del nivel primario e inicial, recuperen dichos saberes desde una mirada interdisciplinar y reconstruyan la relación entre ciencias y saberes culturales.Eje: B5 Sistemas de conocimiento (Relatos de experiencias)Facultad de Ciencias Agrarias y Forestale
    corecore