26,598 research outputs found
Transport of persistent organic pollutants across the human placenta
Environment International 65, 107-115 (2014
Three-loop HTLpt thermodynamics at finite temperature and chemical potential
In this proceedings we present a state-of-the-art method of calculating
thermodynamic potential at finite temperature and finite chemical potential,
using Hard Thermal Loop perturbation theory (HTLpt) up to
next-to-next-leading-order (NNLO). The resulting thermodynamic potential
enables us to evaluate different thermodynamic quantities including pressure
and various quark number susceptibilities (QNS). Comparison between our
analytic results for those thermodynamic quantities with the available lattice
data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP
Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in
Physics Series
Measuring the Hidden Aspects of Solar Magnetism
2008 marks the 100th anniversary of the discovery of astrophysical magnetic
fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines
in sunspots. With the introduction of Babcock's photoelectric magnetograph it
soon became clear that the Sun's magnetic field outside sunspots is extremely
structured. The field strengths that were measured were found to get larger
when the spatial resolution was improved. It was therefore necessary to come up
with methods to go beyond the spatial resolution limit and diagnose the
intrinsic magnetic-field properties without dependence on the quality of the
telescope used. The line-ratio technique that was developed in the early 1970s
revealed a picture where most flux that we see in magnetograms originates in
highly bundled, kG fields with a tiny volume filling factor. This led to
interpretations in terms of discrete, strong-field magnetic flux tubes embedded
in a rather field-free medium, and a whole industry of flux tube models at
increasing levels of sophistication. This magnetic-field paradigm has now been
shattered with the advent of high-precision imaging polarimeters that allow us
to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar
magnetism that have been hidden to Zeeman diagnostics. It is found that the
bulk of the photospheric volume is seething with intermediately strong, tangled
fields. In the new paradigm the field behaves like a fractal with a high degree
of self-similarity, spanning about 8 orders of magnitude in scale size, down to
scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
Three-loop HTL gluon thermodynamics at intermediate coupling
We calculate the thermodynamic functions of pure-glue QCD to three-loop order
using the hard-thermal-loop perturbation theory (HTLpt) reorganization of
finite temperature quantum field theory. We show that at three-loop order
hard-thermal-loop perturbation theory is compatible with lattice results for
the pressure, energy density, and entropy down to temperatures .
Our results suggest that HTLpt provides a systematic framework that can used to
calculate static and dynamic quantities for temperatures relevant at LHC.Comment: 24 pages, 13 figs. 2nd version: improved discussion and fixing typos.
Published in JHE
Recommended from our members
A case report of vanishing bile duct syndrome after exposure to pexidartinib (PLX3397) and paclitaxel.
Pexidartinib (PLX3397) is a small molecule tyrosine kinase and colony-stimulating factor-1 inhibitor with FDA breakthrough therapy designation for tenosynovial giant-cell tumor, and currently under study in several other tumor types, including breast cancer, non-Hodgkin's lymphoma, and glioblastoma. Here, we report a case of severe drug-induced liver injury requiring liver transplantation due to vanishing bile duct syndrome (VBDS) after exposure to pexidartinib in the I-SPY 2 Trial, a phase 2 multicenter randomized neoadjuvant chemotherapy trial in patients with Stage II-III breast cancer. We also review the current literature on this rare, idiosyncratic, and potentially life-threatening entity
Neural signatures of cognitive flexibility and reward sensitivity following nicotinic receptor stimulation in dependent smokers : a randomized trial
IMPORTANCE Withdrawal from nicotine is an important contributor to smoking relapse. Understanding how reward-based decision making is affected by abstinence and by pharmacotherapies such as nicotine replacement therapy and varenicline tartrate may aid cessation treatment.
OBJECTIVE To independently assess the effects of nicotine dependence and stimulation of the nicotinic acetylcholine receptor on the ability to interpret valence information (reward sensitivity) and subsequently alter behavior as reward contingencies change (cognitive flexibility) in a probabilistic reversal learning task.
DESIGN, SETTING, AND PARTICIPANTS Nicotine-dependent smokers and nonsmokers completed a probabilistic reversal learning task during acquisition of functional magnetic resonance imaging (fMRI) in a 2-drug, double-blind placebo-controlled crossover design conducted from January 21, 2009, to September 29, 2011. Smokers were abstinent from cigarette smoking for 12 hours for all sessions. In a fully Latin square fashion, participants in both groups underwent MRI twice while receiving varenicline and twice while receiving a placebo pill, wearing either a nicotine or a placebo patch. Imaging analysis was performed from June 15, 2015, to August 10, 2016.
MAIN OUTCOME AND MEASURES A well-established computational model captured effects of smoking status and administration of nicotine and varenicline on probabilistic reversal learning choice behavior. Neural effects of smoking status, nicotine, and varenicline were tested for on MRI contrasts that captured reward sensitivity and cognitive flexibility.
RESULTS The study included 24 nicotine-dependent smokers (12 women and 12 men; mean [SD] age, 35.8 [9.9] years) and 20 nonsmokers (10 women and 10 men; mean [SD] age, 30.4 [7.2] years). Computational modeling indicated that abstinent smokers were biased toward response shifting and that their decisions were less sensitive to the available evidence, suggesting increased impulsivity during withdrawal. These behavioral impairments were mitigated with nicotine and varenicline. Similarly, decreased mesocorticolimbic activity associated with cognitive flexibility in abstinent smokers was restored to the level of nonsmokers following stimulation of nicotinic acetylcholine receptors (familywise error-corrected P<.05). Conversely, neural signatures of decreased reward sensitivity in smokers (vs nonsmokers; familywise error-corrected P<.05) in the dorsal striatum and anterior cingulate cortex were not mitigated by nicotine or varenicline.
CONCLUSIONS AND RELEVANCE There was a double dissociation between the effects of chronic nicotine dependence on neural representations of reward sensitivity and acute effects of stimulation of nicotinic acetylcholine receptors on behavioral and neural signatures of cognitive flexibility in smokers. These chronic and acute pharmacologic effects were observed in overlapping mesocorticolimbic regions, suggesting that available pharmacotherapies may alleviate deficits in the same circuitry for certain mental computations but not for others
Optical Weak Link between Two Spatially Separate Bose-Einstein Condensates
Two spatially separate Bose-Einstein condensates were prepared in an optical
double-well potential. A bidirectional coupling between the two condensates was
established by two pairs of Bragg beams which continuously outcoupled atoms in
opposite directions. The atomic currents induced by the optical coupling depend
on the relative phase of the two condensates and on an additional controllable
coupling phase. This was observed through symmetric and antisymmetric
correlations between the two outcoupled atom fluxes. A Josephson optical
coupling of two condensates in a ring geometry is proposed. The continuous
outcoupling method was used to monitor slow relative motions of two elongated
condensates and characterize the trapping potential.Comment: 4 pages, 5 figure
Low velocity quantum reflection of Bose-Einstein condensates
We studied quantum reflection of Bose-Einstein condensates at normal
incidence on a square array of silicon pillars. For incident velocities of
2.5-26 mm/s observations agreed with theoretical predictions that the
Casimir-Polder potential of a reduced density surface would reflect slow atoms
with much higher probability. At low velocities (0.5-2.5 mm/s), we observed
that the reflection probability saturated around 60% rather than increasing
towards unity. We present a simple model which explains this reduced
reflectivity as resulting from the combined effects of the Casimir-Polder plus
mean field potential and predicts the observed saturation. Furthermore, at low
incident velocities, the reflected condensates show collective excitations.Comment: 4 figure
- …