214 research outputs found

    Reducing the use of inhaled corticosteroids in mild-moderate COPD: an observational study in east London

    Get PDF
    Inhaled corticosteroids (ICS) are often prescribed for worsening breathlessness, exacerbation frequency or lung function in chronic obstructive pulmonary disease (COPD). In mild-moderate disease and infrequent exacerbations, treatment risks may outweigh benefits and ICS may be withdrawn safely under supervision. A systematic ICS deprescribing programme for patients with mild-moderate COPD was introduced in an east London Clinical Commissioning Group (CCG) in April 2017. Primary care patient record analysis found that prescribing fell from 34.9% (n = 701) in the 18 months pre-intervention to 26.9% (n = 538) by the second year of implementation, decreasing 0.84% per quarter post intervention (p = 0.006, linear regression). The relative decrease was greater than the comparison CCG (23.0% vs. 9.9%). Only South Asian ethnicity was associated with increased cessation (odds ratio 1.48, confidence interval (CI) 1.09-2.01), p = 0.013, logistic regression). Patient outcome data were not collected. A primary care-led programme comprising local education, financial incentivisation and consultant support led to a significant decrease in ICS prescribing

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: Is whole heart coverage necessary?

    Get PDF
    © 2016 Hamshere et al. Background: AAR measurement is useful when assessing the efficacy of reperfusion therapy and novel cardioprotective agents after myocardial infarction. Multi-slice (Typically 10-12) T2-STIR has been used widely for its measurement, typically with a short axis stack (SAX) covering the entire left ventricle, which can result in long acquisition times and multiple breath holds. This study sought to compare 3-slice T2-short-tau inversion recovery (T2- STIR) technique against conventional multi-slice T2-STIR technique for the assessment of area at risk (AAR). Methods: CMR imaging was performed on 167 patients after successful primary percutaneous coronary intervention. 82 patients underwent a novel 3-slice SAX protocol and 85 patients underwent standard 10-slice SAX protocol. AAR was obtained by manual endocardial and epicardial contour mapping followed by a semi- automated selection of normal myocardium; the volume was expressed as mass (%) by two independent observers. Results: 85 patients underwent both 10-slice and 3-slice imaging assessment showing a significant and strong correlation (intraclass correlation coefficient = 0.92;p < 0.0001) and a low Bland-Altman limit (mean difference -0.03 ± 3.21 %, 95 % limit of agreement,- 6.3 to 6.3) between the 2 analysis techniques. A further 82 patients underwent 3-slice imaging alone, both the 3-slice and the 10-slice techniques showed statistically significant correlations with angiographic risk scores (3-slice to BARI r = 0.36, 3-slice to APPROACH r = 0.42, 10-slice to BARI r = 0.27, 10-slice to APPROACH r = 0.46). There was low inter-observer variability demonstrated in the 3-slice technique, which was comparable to the 10-slice method (z = 1.035, p = 0.15). Acquisition and analysis times were quicker in the 3-slice compared to the 10-slice method (3-slice median time: 100 seconds (IQR: 65-171 s) vs (10-slice time: 355 seconds (IQR: 275-603 s); p < 0.0001. Conclusions: AAR measured using 3-slice T2-STIR technique correlates well with standard 10-slice techniques, with no significant bias demonstrated in assessing the AAR. The 3-slice technique requires less time to perform and analyse and is therefore advantageous for both patients and clinicians

    Ethnicity and the first diagnosis of a wide range of cardiovascular diseases: Associations in a linked electronic health record cohort of 1 million patients

    Get PDF
    Background: While the association of ethnic group with individual cardiovascular diseases has been studied, little is known about ethnic differences in the initial lifetime presentation of clinical cardiovascular disease in contemporary populations. Methods and results: We studied 1,068,318 people, aged ≥30 years and free from diagnosed CVD at baseline (90.9% White, 3.6% South Asian and 2.9% Black), using English linked electronic health records covering primary care, hospital admissions, acute coronary syndrome registry and mortality registry (CALIBER research platform). During 5.7 years median follow-up between 1997-2010, 95,224 people experienced an incident cardiovascular diagnosis. 80.2% (77.7% -82.5%) of initial presentation in South Asian <60 yrs were coronary heart disease presentations compared to 66.2% (65.7-66.7) in White and 56.7% (52.1%-61.2%) in Black patients. Compared to White patients, Black patients had significantly lower age-sex adjusted hazard ratios (HRs) for initial lifetime presentation of all the coronary disease diagnoses (stable angina HR 0.80 (95% CI 0.68-0.93); unstable angina – 0.75 (0.59-0.97); myocardial infarction 0.49 (0.40-0.62)) while South Asian patients had significantly higher HRs (stable angina – 1.67 (1.52-1.84); unstable angina 1.82 (1.56-2.13); myocardial infarction – 1.67 (1.49-1.87). We found no ethnic differences in initial presentation with heart failure (Black 0.97 (0.79-1.20); S Asian 1.04(0.87-1.26)). Compared to White patients, Black patients were more likely to present with ischaemic stroke (1.24 (0.97-1.58)) and intracerebral haemorrhage (1.44 (0.97-2.12)). Presentation with peripheral arterial disease was less likely for Black (0.63 (0.50-0.80)) and South Asian patients (0.70 (0.57-0.86)) compared with White patients. Discussion: While we found the anticipated substantial predominance of coronary heart disease presentations in South Asian and predominance of stroke presentations in Black patients, we found no ethnic differences in presentation with heart failure. We consider the public health and research implications of our findings

    TOI-1416: A system with a super-Earth planet with a 1.07 d period

    Get PDF
    TOI-1416 (BD+42 2504, HIP 70705) is a V =10 late G- or early K-type dwarf star. TESS detected transits in its Sectors 16, 23, and 50 with a depth of about 455 ppm and a period of 1.07 days. Radial velocities (RVs) confirm the presence of the transiting planet TOI-1416 b, which has a mass of 3.48 ± 0.47 M• and a radius of 1.62 ± 0.08 R•, implying a slightly sub-Earth density of 4.500.83+0.99 g cm3. The RV data also further indicate a tentative planet, c, with a period of 27.4 or 29.5 days, whose nature cannot be verified due to strong suspicions of contamination by a signal related to the Moon s synodic period of 29.53 days. The nearly ultra-short-period planet TOI-1416 b is a typical representative of a short-period and hot (Teq ≈ 1570 K) super-Earth-like planet. A planet model of an interior of molten magma containing a significant fraction of dissolved water provides a plausible explanation for its composition, and its atmosphere could be suitable for transmission spectroscopy with JWST. The position of TOI-1416 b within the radius-period distribution corroborates the idea that planets with periods of less than one day do not form any special group. It instead implies that ultra-short-period planets belong to a continuous distribution of super-Earth-like planets with periods ranging from the shortest known ones up to ≈ 30 days; their period-radius distribution is delimited against larger radii by the Neptune Desert and by the period-radius valley that separates super-Earths from sub-Neptune planets. In the abundance of small, short-periodic planets, a notable plateau has emerged between periods of 0.6- 1.4 days, which is compatible with the low-eccentricity formation channel. For the Neptune Desert, its lower limits required a revision due to the increasing population of short-period planets; for periods shorter then 2 days, we establish a radius of 1.6 R• and a mass of 0.028 Mjup (corresponding to 8.9 M•) as the desert s lower limits. We also provide corresponding limits to the Neptune Desert against the planets insolation and effective temperatures

    TOI-1130: A photodynamical analysis of a hot Jupiter in resonance with an inner low-mass planet

    Get PDF
    The TOI-1130 is a known planetary system around a K-dwarf consisting of a gas giant planet, TOI-1130 c on an 8.4-day orbit that is accompanied by an inner Neptune-sized planet, TOI-1130 b, with an orbital period of 4.1 days. We collected precise radial velocity (RV) measurements of TOI-1130 with the HARPS and PFS spectrographs as part of our ongoing RV follow-up program. We performed a photodynamical modeling of the HARPS and PFS RVs, along with transit photometry from the Transiting Exoplanet Survey Satellite (TESS) and the TESS Follow-up Observing Program (TFOP). We determined the planet masses and radii of TOI-1130 b and TOI-1130 c to be Mb = 19.28 ± 0.97M⊕ and Rb = 3.56 ± 0.13 R⊕, and Mc = 325.59 ± 5.59M⊕ and Rc = 13.32-1.41+1.55 R⊕, respectively. We have spectroscopically confirmed the existence of TOI-1130 b, which had previously only been validated. We find that the two planets have orbits with small eccentricities in a 2:1 resonant configuration. This is the first known system with a hot Jupiter and an inner lower mass planet locked in a mean-motion resonance. TOI-1130 belongs to the small, yet growing population of hot Jupiters with an inner low-mass planet that poses a challenge to the pathway scenario for hot Jupiter formation. We also detected a linear RV trend that is possibly due to the presence of an outer massive companion

    Regulation of inflammation in Japanese encephalitis

    Get PDF
    Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis

    Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley

    Get PDF
    We report on precise Doppler measurements of L231-32 (TOI-270), a nearby M dwarf (d = 22 pc, M⋆ = 0.39 M⊙, R⋆ = 0.38 R⊙), which hosts three transiting planets that were recently discovered using data from the Transiting Exoplanet Survey Satellite (TESS). The three planets are 1.2, 2.4, and 2.1 times the size of Earth and have orbital periods of 3.4, 5.7, and 11.4 d. We obtained 29 high-resolution optical spectra with the newly commissioned Echelle Spectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) and 58 spectra using the High Accuracy Radial velocity Planet Searcher (HARPS). From these observations, we find the masses of the planets to be 1.58 ± 0.26, 6.15 ± 0.37, and 4.78 ± 0.43 M⊕, respectively. The combination of radius and mass measurements suggests that the innermost planet has a rocky composition similar to that of Earth, while the outer two planets have lower densities. Thus, the inner planet and the outer planets are on opposite sides of the ‘radius valley’ – a region in the radius-period diagram with relatively few members – which has been interpreted as a consequence of atmospheric photoevaporation. We place these findings into the context of other small close-in planets orbiting M dwarf stars, and use support vector machines to determine the location and slope of the M dwarf (Teff < 4000 K) radius valley as a function of orbital period. We compare the location of the M dwarf radius valley to the radius valley observed for FGK stars, and find that its location is a good match to photoevaporation and core-powered mass-loss models. Finally, we show that planets below the M dwarf radius valley have compositions consistent with stripped rocky cores, whereas most planets above have a lower density consistent with the presence of a H-He atmosphere
    corecore