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Abstract

Background: Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese
encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections,
exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be
important forces driving JE pathogenesis.

Main body: Brain-infiltrating monocytes, macrophages and microglia play a major role in central nervous
system (CNS) inflammation during JE. Moreover, the role of inflammatory monocytes in viral neuroinvasion
during JE and mechanisms of cell entry into the CNS remains unclear. The identification of cellular and
molecular actors in JE inflammatory responses may help to understand the mechanisms behind excessive
inflammation and to develop therapeutics to treat JE patients. This review addresses the current knowledge
about mechanisms of virus neuroinvasion, neuroinflammation and therapeutics critical for JE outcome.

Conclusion: Understanding the regulation of inflammation in JE is challenging. Elucidation of the remaining
open questions will help to the development of therapeutic approaches avoiding detrimental inflammatory
responses in JE.

Background
Japanese encephalitis (JE) is an acute and uncontrolled
inflammatory disease of the central nervous system
(CNS) in humans, especially affecting children. JE is
caused by Japanese encephalitis virus (JEV), a neuro-
tropic single-stranded RNA virus belonging to the
Flaviridae family, Flavivirus genus. JEV is transmitted by
mosquito vectors in a zoonotic cycle involving wild
aquatic bird reservoirs and pigs as amplifying hosts.
Humans are dead-end hosts, because low viremia does
not allow further viral spread [1]. The incubation period
is 5–15 days and common symptoms include fever,
headache, vomiting and neurologic symptoms such as
paralysis and movement disorders. Seizures can occur in
severe cases [1–3]. However, less than 1% of JEV infec-
tions are symptomatic. JE has an estimated incidence of
70,000 human cases annually, including 5–30% fatal
cases and 30–50% of survivors showing permanent
neurological sequelae [4, 5]. Therefore, JEV is a leading

cause of severe encephalitis in Asia where it is epidemic
in northern regions and endemic in southern regions
[6]. JEV-infected areas extend from Pakistan to Japan
and from Korea to Indonesia [5, 6]. In 1995, Eastern Pa-
cific regions and Northern Australia became infected
[7]. During the 2000s, JEV RNA, but no infectious virus,
has occasionally been detected in Italy [8, 9]. Recently,
JEV RNA was detected in Angola during a yellow fever
outbreak in 2016 [10]. Moreover, JEV distribution exists
under both tropical/subtropical and temperate climates
[11]. Altogether, JEV’s spread to new regions represents
an increasing risk [9, 12] and JEV may become a world-
wide public health concern.
JEV-induced inflammation contributes to disease se-

verity by inducing neuronal cell death [13, 14], inhibiting
the proliferation and differentiation of neural progeni-
tors [15] and disrupting the blood-brain barrier (BBB)
[16, 17]. Importantly, JEV-induced inflammation further
modulates cytokine/chemokine production [18] as well
as the activation and migration of cells [13, 19]. There-
fore, production of soluble factors and trafficking of im-
mune cells may lead towards either disease progression
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or recovery through promotion of protective immune
responses.
Although vaccination programs for travellers and

inhabitants of regions at risk contribute to prevention of
JE [5], unvaccinated individuals remain at risk. Now-
adays, no specific cure exists for individuals developing
JE [2, 3]. Therefore, the development of an effective and
specific curative treatment for JE patients is necessary
and requires further investigations.
The present review aims to understand cellular and mo-

lecular mechanisms involved in inflammatory responses
to JEV infection and to identify key regulators of inflam-
mation in JE. The understanding of these mechanisms
may be central for the development of specific curative
treatment of JE. Accordingly, the present review presents
potential pharmaceutical candidates with promising anti-
inflammatory or anti-viral properties.

Tropism and kinetics of viral replication
JEV is detected in various anatomical sites and propa-
gates in various cell types including non-immune and
immune cells (Table 1). Individuals are infected by JEV
upon the bite of an infected mosquito. The dermis is
supposedly the primary site of infection and JEV may
propagate in cells of the dermal tissue before reaching
lymphoid organs, probably transported by infected mi-
gratory immune cells such as Langerhans cells [3, 20,
21]. As a result, JEV has been detected and isolated from
the spleen and lymph nodes of infected patients [16, 22–
24]. During the acute phase of human JE, the virus can
be isolated from blood cells [25, 26]. This can be associ-
ated with a low and transient viremia [2], and was also
described in mouse models [16, 22, 27]. JEV may also
replicate in human lymphocytes, albeit at low rate and
possibly depending on the virus strain [28, 29]. Mono-
cytes allow viral propagation in vitro by JEV without
evidence of cell death [28, 30]. Interestingly, immature
but not mature human monocyte-derived dendritic cells

(DC) are susceptible to JEV infection in vitro resulting
in virus propagation [31, 32]. It would still be necessary
to quantify viral RNA over time in mature human DC in
order to evaluate virus replication. Also murine DC al-
lows virus replication in vivo and in vitro [33–36], but
not the release of infectious viral particles in vitro [34].
Thus, the identification of the causes for the unproduct-
ive JEV infection of murine DC and mature human DC
would help to understand key regulators for viral propa-
gation in the latter cell types and others. Moreover, mur-
ine plasmacytoid DC (pDC) are permissive to JEV [35].
Human [37] and murine [29, 34–36] macrophages
support virus propagation in vitro. But, JEV is cytotoxic
to macrophages [38].
The mechanism behind JEV entry into the CNS is not

well understood. Nevertheless in mice, the BBB disrupts
only after viral neuroinvasion [16] indicating that neural
infection is not necessary a consequence of the break-
down of the BBB, but the other way around. Interest-
ingly, JEV productively infects rodent microvascular
brain endothelial cells [39] that may be functionally
affected in terms of their role for the BBB [21, 39, 40].
As these form the blood-brain barrier, this may repre-
sent a possible way of JEV transmission to brain tissue
cells [41], after which the virus could infect pericytes
[42] and astrocytes [39, 43]. Also the microglia cells
representing CNS-resident macrophages are susceptible
to JEV infection in vivo [44]. Murine microglia is also
productively infected by JEV for up to 16 weeks in vitro
[45]. Although human microglia cells allow JEV replica-
tion, infectious virus is transmitted to susceptible cells in
a cell-cell dependent manner [46].
After entering into the brain, JEV is found in the ner-

vous tissue and cerebrospinal fluid (CSF) in JE patients
[26, 47–49] and in the mouse model [16, 23, 24, 49]. In
the human brain, JEV antigen is mainly detected in the
nuclear grey matter, including the thalamus, the hypo-
thalamus, the hippocampus and the substantia nigra

Table 1 Cellular source of viral propagation with body localization and abilities of neuroinvasion

Body localisation Cell type JEV propagation CNS infiltration

Blood Granulocytes − +

Immature/mature DC +/− n.i.

pDC + n.i.

Monocyte + +

BBB Endothelial cell +

Pericyte +

Astrocyte +

CNS Microglia +

Neurons +

Tissues Macrophage + +

Tissue include the brain; n.i. no information
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[48–50], where most of brain lesions appear [1, 51]. Also
in macaques intranasally infected with JEV, viral antigen
is detected in the thalamic and brain stem nuclei [44].
Neuronal cells are reported to be the most important
target cells of JEV [16, 44, 52], allowing virus propaga-
tion [49]. Rodent models indicate that JEV has a particu-
larly high tropism for neuronal precursors and
developing neurons, affecting their proliferation and
development [15, 52, 53]. Furthermore, JEV infection
can cause direct neuronal damage [28, 52], which is fur-
ther enhanced by JEV-induced inflammation [54, 55]. Ac-
tually, some studies suggested a correlation between the
fatal outcome and the degree of inflammatory responses,
although this remains controversial [3, 44, 49, 50, 56–58].
As a potent model for the study of human disease,

pigs infected with JEV present a high viral loads in sec-
ondary lymphoid tissue. However, these animals have
high viremia without association of JEV to blood leuko-
cytes [59]. Also, JEV is consistently found in CNS tissues
of animals, even if they did not show clinical symptoms
[60]. Unlike human and murine cells, both porcine
monocytes-derived DC and macrophages efficiently sup-
port virus replication (unpublished observations, A.
Summerfield).

Inflammation in JE
Inflammatory cells in JE
Upon JEV infection, various immune cell types increase
in number in various compartments of the periphery, in-
cluding the spleen, lymph nodes and blood. In mice,
numbers of macrophages, inflammatory monocytes,
granulocytes and pDC increase in lymphoid tissues, such
as spleen and lymph nodes [19, 29, 36]. Although not
dramatically, natural killer cell population decreased in
the spleen of JEV-infected mice [19]. In the blood, leuco-
cytosis characterized by high numbers of monocytes and
neutrophils was found in human patients [50, 61]. Simi-
larly, JEV-infected mice show an increase of monocytes
and neutrophils in blood [17, 19].
During JE, various peripheral immune cell types infil-

trate the CNS (Table 1). In JE, infection of microvascular
endothelial cells enhances the expression of adhesion
molecules leading to transmigration of leukocytes [39].
In macaques intranasally infected with JEV, evidence of
endothelial cells activation is also found [44]. However,
DC is critical to maintain the integrity of the BBB by
modulating the expression of tight junction and adhe-
sion molecules in mice intraperitoneally infected with
JEV [62] and provided adequate signal to differentiate/
activate monocytes regulating neuroinflammation and
viral propagation into the brain [23]. In the CSF of JE
patients, leukocytes count of polymorphonuclear and
mononuclear cells increases [15, 63]. In human brains of
lethal JE cases, detection of perivascular erythrocytes

and peripheral inflammatory mononuclear cells infil-
trates indicates major vascular damage [49]. Also, peri-
vascular infiltrates and multifocal lymphohistiocytic
meningitis are a hallmark of JEV-infected pigs [59]
and macaques [44]. In mice, macrophages/monocytes
are the majority of brain-infiltrating inflammatory
myeloid cells [19, 24, 49, 64, 65]. In addition, granu-
locytes and NK cells also infiltrate the brain of JEV-
infected mice [19, 65, 66].
In addition to the contribution of peripheral immune

cells infiltrating the brain, brain-resident cells interact
with JEV upon infection of the brain. Activated micro-
glial cell nodules develop, and the number of reactive
astrocytes increases in human [49], macaques [44] and
mouse [67]. Such glial nodules and evidences of neur-
onal degeneration and necrosis were also found [44, 59].
Microglia has been proposed to play a major role in
neuronal cell death through release of pro-inflammatory
mediators [13].

Inflammatory and anti-viral mediators in JE
Inflammation is a hallmark of JE with various inflammatory
chemokines and cytokines having potential anti-viral activ-
ity in different body localizations. Inflammatory immune
cells described previously, in addition to non-immune cells,
can be sources of those mediators in response to JEV
(Table 2). Human DC produce the cytokines tumour ne-
crosis factor (TNF)-α, interleukin (IL)-6, type-I interferons
(IFN) and the chemokines CCL2, CCL5, CXCL8 (IL-8) and
CXCL10 in response to JEV [31, 32]. Upon exposure to
JEV, murine DC produce TNF-α IL-6, IL-12, type-I IFN
and CCL2 [33–35]. However, contrasting results of the
various studies may be virus strain-specific since Beijing-1
strain induced TNF-α in murine DC [34, 35] whereas JEV
P3 strain did not [33]. Additionally, murine pDC produce
type-I IFN in response to JEV [35]. Human [24, 37] and
murine [24, 34, 35, 38, 55] macrophages produce TNF-α,
IL-6, IFN-α and CCL2 in response to JEV in vitro. More-
over, CXCL-8 has been measured from human macro-
phages [37] and IL-12, IFN-β and IFN-γ from murine
macrophages [34, 35, 38, 55]. Both human [46] and rodent
[24, 54, 68] microglia produce CCL2 upon JEV exposure.
In addition, human microglia produce CXCL9 and
CXCL10 [46]. Rodent microglia also release cytokines such
as TNF-α, IL-1β, IL-6 [13, 24, 68, 69] and the chemokine
CCL5 [13, 70]. Upon intracranial infection of mice, micro-
glia stain for TNF-α, IL-1β, IL-6 and IL-18 [14, 24] and
brain infiltrating monocytes for TNF-α and IL-6 [24]. In
JEV-macaques, microglia stains for TNF-α [44]. As part of
the BBB, human endothelial cells produce TNF-α and IFN-
β in response to JEV [71] and rat endothelial cells produce
CCL5 [39]. Rodent pericytes produce IL-6 upon JEV treat-
ment [42]. Astrocytes of rodent origin release the cytokines
IL-1β, IL-6, IL-18 and the chemokine CCL5 [13, 14, 43,
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70]. Moreover, both JEV-infected human and murine astro-
cytes are responsible for the production of CXCL10 [72].
Brain sections of JEV-infected macaques reveal staining for
TNF-α and IFN-α in astrocytes [44]. Finally, neurons of
murine origin release TNF-α, IL-6, IL-12, IFN-α, IFN-γ
and CCL2 in response to JEV treatment [73–75]. In JEV-
infected macaques, neuronal cells are positive for IFN-α
staining [44].

Chemokines
Chemokine axis plays a crucial role in JE pathogenesis
by attracting migrating cells of the lymphatic and blood
circulation systems. In JEV-infected mice, the spleen
presents upregulated levels of CCL2 and CXCL10 [64,
76]. Alongside, serum of JEV-infected mice has higher
levels of CCL2, CCL4 and CXCL10 as compared to un-
infected animals [16, 24]. In JE-human patients, plasma
and serum contain enhanced levels of CXCL8 and CCL5
[63, 77]. In response to a vaccine containing a live atten-
uated strain of JEV, serum of immunized human subjects
increase levels of IL-8, CCL2, CCL3 and CCL4 [78]. At
the CNS level, CSF of JEV-infected mice presents ele-
vated levels of CCL2 [24]. In the CSF of JE-patients, IL-8
and CCL5 are found in elevated levels [63, 77, 79].
Brains of JEV-infected mice have increased levels of
CCL2, CCL3, CCL4, CCL5 and CXCL10 [15, 16, 36, 54,
64, 68, 76]. Interestingly, cortex, striatum, thalamus,
hippocampus, sub-ventricular zone and midbrain are
found to express high levels of CCL2, with highest levels
found in the cortex [15, 36, 80]. Moreover, enhanced
mRNA levels of CCR1, CCR2, CCR4, CCR5, CXCR2 and
CXCR3 have been measured in the brain of JEV-infected
mice [19, 67].
The CCL5-CCR5 axis is involved in recovery and may

control the level of inflammation during JE. In JE
patients, higher levels of CCL5 have been found in CSF
of non-survivors than in survivors [77]. Although
neutralization of CCL5 does not affect the adhesion of
peripheral blood mononuclear cells and neutrophils on a

monolayer of human endothelial cells, transmigration of
leukocytes across the monolayer is inhibited [39]. In
vitro neutralization of CCL5, produced by JEV-infected
murine glial cells, inhibits the attraction of murine
monocytes/macrophages [18, 70]. However, CCR5-
knock-out (KO) mice are more susceptible to lethal JEV
infection upon both intravenous [65] and intraperitoneal
injection [81] although only intravenous infection leads
to higher viral burden in the brain and spinal cord com-
pared to control animals [65]. CCR5-KO mice also
present increased numbers of brain infiltrating mono-
cytes and granulocytes, as well as activated microglia
and macrophages. Moreover, CCR5-KO mice show
higher levels of the mediators IL-1β, IL6, CCL2, CCL3,
CCL4 and CCL5 [81].
In the process of brain-invasion by inflammatory cells

and potential viral neuroinvasion during JE, the CCL2-
CCR2 axis plays a crucial role which further affect brain
inflammatory environment. Upon intradermal infection
of mice with JEV, CCL2 deficiency increases mortality
and morbidity of animals which presented higher viral
loads in brain and spinal cord in comparison to control
animals [19]. Although neutralization of CCL2 produced
by JEV-infected murine glia reduces attraction of murine
monocytes/macrophages cell line in vitro [70], mono-
cytes and granulocytes accumulate in the brain of JEV-
infected CCL2-deficient mice [19]. Moreover, higher ex-
pression levels of the chemokine ligands CCL3, CCL4,
CCL5 and CXCL9, as well as the receptors CCR1,
CCR2, CCR4 and CCR5 are detected in the brain of the
these animals [19]. Interestingly, CCR2 deficiency in
mice leads to decreased susceptibility against lethal in-
fection by JEV, but with no difference in viral load in the
brain. Moreover, CCR2 deficiency results in a reduced
accumulation of monocytes, but not granulocytes in the
brain of JEV-infected mice [19]. However, in another
mouse model where DC were ablated, CCR2 deficiency
increases the speed of accumulation of monocytes into
the CNS compared to control animals [23] indicating

Table 2 Cellular source of cytokines and chemokines

TNF-α IL-1β IL-6 IL-12 IL-18 IFN-α/β IFN-γ CCL2 CCL5 CXCL8 CXCL9 CXCL10

Granulocytes

DC + + + + + + + +

pDC +

Monocyte + +

Endothelial cell + + +

Pericyte +

Astrocyte + + + + + + +

Microglia + + + + + + + +

Neurons + + + + + +

Macrophage + + + + + + + +
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that the speed of monocytes into the CNS is CCR2-
dependent. Finally, JEV-infected CCR2-deficient mice
have also reduced expression of CCL3, CCL4, CCL5 and
CCR1 in the brain [19].

Cytokines
Cytokines are essential to mount a potent immune re-
sponse against JEV providing danger signals and anti-viral
activity. In JEV-infected mice, increased levels of IL-12
and IFN-γ are found in lymph nodes and spleen [28, 64].
Serum of JEV-infected mice contains TNF-α, IL6, IL-18,
as well as IFNs [16, 24, 27, 35, 36, 82]. In JE-human pa-
tients, increased levels of TNF-α [83] and IFN-α [84] are
measured in blood. At the CNS level, CSF of mice shows
elevated levels of TNF-α, IL6 and IL-18 [24] upon JEV in-
fection. In the brain tissue of JEV-infected mice, upregu-
lated levels of TNF-α, IL-1β, IL-6, IL-12, IL-18, IFN-γ and
CXCL10 have been reported [14–16, 36, 54, 64, 68, 72,
82]. Notably, the cerebral cortex presents the highest level
of TNF-α, IL-6 and types I and II IFNs [15, 36, 54, 80]. In
JE-patients, an increase of TNF-α, IL-6 and IFN-α is
detected in the CSF [77, 79, 83, 84].
In JE, TNF-α has a major impact on the dynamic of in-

flammation and the outcome of the disease. For instance,
high levels of TNF-α in serum and CSF of patient is asso-
ciated with lethality [83]. Intracranial administration of si-
lencing RNA (siRNA) against the TNF receptor-associated
death domain (TRADD) decreases mortality of intraven-
ously JEV-infected mice [85], reduces virus neuroinvasion
and neuronal cell death [67]. In vitro neutralization of
TNF-α derived from JEV-infected murine microglia cul-
tures also reduces cytotoxicity to neuronal cells [13].
Interestingly, the brain of JEV-infected mice treated with
TRADD siRNA has an abrogated expression of adhesion
molecules and lower levels of brain-infiltrating neutrophils
were found [67]. In vitro neutralization of TNF-α inhibits
the production of CCL5 from JEV-infected glia. As a re-
sult, the latter supernatants show reduced chemotactic ac-
tivity towards murine macrophages [18]. Furthermore,
TNF-α enhances the production of CCL5 by uninfected
murine astrocytes [18] which may enhance the recruit-
ment of leukocytes in JE. Finally, TRADD siRNA treat-
ment of JEV-infected mice reduces the expansion of
astrocytes and the activation of microglia. Brain of these
mice have reduced levels of the mediators TNF-α, IL-6,
IL-12, IFN-γ and CCL2, as well as the receptors CCR1,
CCR2 and CXCR3 [67].

Molecular components of JEV recognition
Pattern recognition receptors in the recognition of JEV
JEV has been found to interact with the toll-like receptor
2 (TLR2) in neurons and TLR3 and/or TLR7 in micro-
glial cells [75, 86, 87]. Upon JEV infection, KO of TLR3
in mice enhances lethality and severity of JE, as wells as

viral loads in the spinal cord and the brain in compari-
son to control animals [36]. Actually, knocking-down
(KD) of TLR3 with small hairpin RNA increases viral
load in murine microglia [87]. Additionally, TLR3-KO
mice present stronger permeability of the BBB and in-
creased brain-infiltration of inflammatory monocytes
with activation of macrophages/microglia. These animals
also show higher levels of systemic IL-6 and IFN-β. In
the brain and the spinal cord, higher mRNA levels of IL-
6, type-I IFN, CCL2, CCL5 and CXCL10 are detected,
whereas CCL3 and CCL4 are only found in the spinal
cord [36]. KD of TLR3 in murine microglia reduces the
secretion of TNF-α [87]. In contrast to TLR3-KO mice,
JEV-infected TLR4-KO mice show reduced severity and
lethality of JE and lower viral loads are detected in the
brain than in wild-type (WT) animals. Interestingly,
TLR4-KO mice do not show any difference in brain-
infiltration of inflammatory monocytes and activation of
macrophages/microglia. However, these animals secrete
high levels of systemic IFN-β [36]. Otherwise, subcuta-
neous JEV infection of systemic TLR7-KD mice leads to
increased mortality in comparison with control animals,
whereas specific KD of brain TLR7 does not influence
the mortality of the animals. Interestingly, systemic
TLR7-KD mice show higher brain viral loads than brain
TLR7-KD in mice, indicating the importance of periph-
eral virus detection in order to control JEV neuroinva-
sion. Moreover, systemic TRL7-KD mice secrete higher
levels of brain IL-6 than brain TLR7-KD in mice. Never-
theless, KD of TLR7 leads to stronger brain-infiltration
of monocytes and neutrophils, stronger activation of
microglia and higher levels of TNF-α, IL-6 and CCL2,
but lower levels of IFN-α in the brain of both models
[75]. At the cytoplasmic level, the melanoma
differentiation-associated protein 5 (MDA5) and retinoic
acid-inducible gene 1 (RIG-I) are important [86]. KD of
RIG-I increases viral load in murine microglia [87]. In
addition, blockade of RIG-I decreases the release of
TNF-α, IL-6 and CCL2 from murine microglia [87] and
neurons [73] and of IL-12 from neurons [73]. Overall,
TLR3 and RIG-I may rather be protective. Furthermore,
TLR7 seems to initiate protective inflammatory signals
against JE. In contrast, TLR4 may contribute to patho-
logical JE. JEV has also been reported to interact with
the C-type lectin domain family 5 member A (CLEC5A)
receptor leading to the phosphorylation of the DNAX
activation protein of 12 kDa in human and murine mac-
rophages [24]. In mice infected intraperitoneally with
JEV, administration of anti-CLEC5A antibodies via the
same route diminishes the susceptibility to lethal JEV in-
fection and reduces JEV neuroinvasion. These animals
maintain the integrity of the BBB and reduce brain-
infiltration of inflammatory myeloid cells and prolifera-
tion of macrophages/microglia. Moreover, lower levels of
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TNF-α, IL-6, IL-18 and CCL2 are found in serum and
CSF [24]. Additionally, KD of NOD-like receptor family
pyrin domain containing 3 (NLRP3) by siRNA decreases
the production of IL-1β and IL-18 in murine microglia
upon JEV treatment. Nevertheless, activation of NLRP3
in JEV-treated microglia is due to secondary signals such
as the activity of caspase-1, itself influenced by reactive
oxygen species [68]. Thus, CLEC5A and NLRP3, both
associated with the inflammasome activation, seem to
have major contribution to pathological JE.

Downstream signalling pathways upon JEV recognition
Upon JEV recognition, downstream signalling pathways
are induced and may involve adaptor proteins such as
myeloid differentiation primary response gene 88
(MyD88) [34, 86]. Upon JEV exposure in vitro, both DC
and macrophages from MyD88-KO mice reduce the
production of IL-6 and IL-12 in comparison to cells
from WT-mice. Moreover, macrophages of MyD88-KO
animals also release less TNF-α [34].
Furthermore, kinases such as protein kinase B (Akt)

[38], phosphoinositide 3-kinase (PI3K) [32, 38], p38
mitogen-activated protein kinase (p38MAPK) [32, 34, 38,
55, 73, 87] and signal-regulated kinase (ERK) [39, 70, 87–
89] are found to be involved in signalling pathways upon
JEV recognition. Upon inhibition of p38MAPK or PI3K,
human DC produces less TNF-α, type-I IFN and CXCL8
[32]. Murine DC diminishes the production of TNF-α, IL-
6 and IL-12 after inhibition of p38MAPK [34]. In murine
macrophages, inhibition of p38 MAPK reduce the produc-
tion of TNF-α, IL-6, IL-12, IFN-γ and CCL2, resulting in
the loss of cytotoxicity to neuronal cells [55]. In murine
microglia, inhibition of p38MAPK or ERK leads to re-
duced production of TNF-α, IL-6 and CCL2 [87]. Inhib-
ition of ERK also leads to abrogated production of TNF-α
and IL-1β by rat microglia [88]. Finally, inhibition of ERK
leads to reduced release of CCL5 glial cells [70] and endo-
thelial cells [39] of rodents. In addition, inhibition of ERK
leads to reduced expression adhesion molecules in rodent
endothelial cells [39].
Finally, transcription factors such as interferon regu-

lated factor 3 (IRF3)/IRF7 [36, 75, 86, 90–92], activator
protein 1 [87] and nuclear factor kappa-light-chain-en-
hancer of activated B cell (NF-κB) [38, 39, 70, 73, 75, 87]
are found to be implicated during JEV infection. In rat
microglia, inhibition of NF-κB abrogates the production
of TNF-α and IL-1β by rat microglia [88]. In rodent
endothelial cells, inhibition of NF-κB reduces the pro-
duction of CCL5 and adhesion molecules [39].
Importantly, the activity of inflammatory components

have also been described to depend on the janus kinase-
signal transducer and activator of transcription (JAK-
STAT) signalling pathway in JEV infection. This requires
the activation of STAT1 [24, 36, 92] and the expression

of IFN-dependent and IFN-independent IFN-stimulated
genes [36, 37].

MicroRNA upon JEV treatment
MicroRNAs (miRNA) contribute to the regulation of gene
expression in various cell types including astrocyte, micro-
glia and neuronal cells upon JEV infection. Replicative
JEV modulates cellular miRNA expressions in time- and
dose-dependent manners [93–96]. JEV-influenced miR-
NAs target elements of pathogen recognition [95, 96] and
downstream signalling pathways [93, 94, 97, 98], as well as
the JAK-STAT signalling pathway [95, 99–102].
JEV may modulate the expression of miRNA resulting in

inhibition of inflammatory responses. JEV downregulates
the expression of miR-432 reducing the production of
TNF-α and IL-6 and suppressed JEV replication in human
microglia [101]. Moreover, JEV upregulates miR-146a ex-
pression reducing the expression of TNF-α and IL-6 in
both human and murine microglia [99, 100] and of IL-1β,
IFN-α and IFN-β in murine cells [100]. However, miR-146a
enhances JEV replication in human microglia [99]. Finally,
JEV upregulates miR-301a expression, which inhibits type-I
IFN production in human and murine neuronal cells. How-
ever, miR-301a promotes JEV replication [102].
Otherwise, the influence of JEV on the expression of

miRNA may result in enhanced inflammatory responses
as well as increased JE lethality and severity. Such miR-
NAs represent potential therapeutic targets. In murine
microglia cells, JEV upregulates miR-29b expression indu-
cing microglia activation and increased expression of
TNF-α, IL-1β, IL-6 and CCL2. Inhibition of miR-29b re-
duces the expression of inflammatory mediators [98]. In
human glioblastoma cells, JEV downregulates the expres-
sion of miR-370 enhancing expression IFN-β, inhibited by
using a miR-370 mimic. Virus replication rate and JEV-
induced cell injury are also inhibited by using miR-370
mimic, but restored by further inhibition of the miR-370
mimic activity [97]. In both human astrocytoma cells and
murine microglia cells, JEV upregulates miR-19b-3p [93]
and miR-15b [96] increasing the production of TNF-α, IL-
1β, IL-6 and CCL5 [93, 96], as well as IL-12, IFN-β and
CCL2 [96]. Inhibition of miR-19b-3p or miR-15b sup-
presses the production of these inflammatory mediators.
Importantly, intravenous administration of miR-19b-3p or
miR-15b antagonist reduces neuroinflammation and le-
thality of mice upon intracranial infection with JEV [93,
96]. Finally, JEV upregulates the expression of miR-155 in
both human and mouse brain tissue [94]. miR-155 expres-
sion enhances the production of TNF-α, IL-6, IFN-β and
CCL2 in murine microglia cells [94], but reduces the ex-
pression of TNF-α, IL-1β and IFN-β in human microglia
cells [103]. miR-155 also suppresses JEV replication in hu-
man microglia [103]. Nevertheless, intravenous adminis-
tration of anti-miR-155 attenuates neuroinflammation,
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microglial activation and mortality in intravenously JEV-
infected mice [94].

Therapeutic candidates to control JE
There is still no specific curative treatment for JE.
Nevertheless, anti-inflammatory therapeutic candidates
are currently under evaluation. However, such candi-
dates must have specific anti-viral effects against JEV.
The following drugs have shown promising effects
during the course of a JEV infection.
Arctigenin is a polyphenolic lignan compound found

in plants of the Asteraceae family. Upon JEV infection,
arctigenin inhibits the activation of kinases such as p38-
MAPK, ERK and Akt abrogating microglial activation
and production of cytokines such as TNF-α, IL-6, IFN-γ
and CCL2 [104]. Arctigenin also reduces JEV-induced
neuronal cell death [104]. Importantly, arctigenin

reduces brain tissue viral load, induces neuroprotection
and protects from JE lethality [104].
Minocycline is a semi-synthetic tetracycline antibiotic.

Upon JEV infection, minocycline reduces the phosphoryl-
ation of kinases such as PI3K, Akt and p38 MAPK, as well
as the transcription factor NF-κB [38]. As a result, minocy-
cline reduces the production of TNF-α, IL-6, IL-12, IFN-γ
and CCL2 in the brain [64, 105] and inhibits microglial ac-
tivation [15, 105]. Interestingly, minocycline also limits the
infiltration of innate immune cells into the brain of JEV-
infected mice [15, 64]. Finally, minocycline reduces viral
replication and the expression of viral antigen in the brain
and confers complete protection against JE [64, 105].
2-(2-Methyl-quinoline-4ylamino)-N-(2-chlorophenyl)-

acetamide (PP2) is a synthetic anilidoquinoline derivative.
In microglia and neuron/glia cultures infected with JEV,
PP2 suppresses the activation of NF-κB decreasing the

Fig. 1 Monocytes participate in inflammation and viral propagation and produce TNF-α upon JEV infection. (1) TNF-α is implicated in the activation and
differentiation of monocytes as well as (2) the expression of adhesion molecules on endothelial cell surface constituting the BBB which participates in (3) the
transmigration of inflammatory monocytes through the BBB. (4) In the brain, inflammatory monocytes, macrophages, microglia and neuronal cells contribute
to viral propagation and neuroinflammation. (5) TNF-α and CCL2 lead to microglial activation and astrocytic expansion. (6) Ultimately, neuronal cell death
results of direct cytotoxicity of JEV and indirect effects of inflammatory mediators. (in black) Chemokines (CCL2) and pattern recognition receptors (TLR3, TLR7)
inhibit cellular and virus neuroinvasion and miRNAs (miR-155b, miR-146a) suppress microglia-derived inflammatory responses during JE. (in red) Promising
therapeutic candidates inhibit neuroinflammation in JE
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production of TNF-α, IL-1β and CCL5 [89, 106]. PP2 also
reduces neurotoxicity of JEV [89, 106, 107]. Although PP2
A does not affect JEV replication, it reduces the phosphor-
ylation of the viral protein NS3 by phospotyrosine result-
ing in a diminished release of infectious virus particles
from neuron/glia cultures [89, 106]. PP2 reduces mature
intracellular and brain viral load and confers neuroprotec-
tion [107]. Importantly, Mice treated with PP2 show
complete protection from lethal JEV infection [107].
Vivo-morpholinos (MOs) are synthetic uncharged

anti-sense oligomer analogs of DNA or RNA targeting
specific genomic region. MOs targeting JEV genome re-
duces phosphorylation of the kinases p38 MAPK and
ERK as well as the transcription factor NF-κB. Conse-
quently, MOs inhibit the production of TNF-α, IL-6,
IFN-γ and CCL2 in the brain and microglial activation
[108]. MOs abrogate neurodegeneration, reduce viral
load in the brain and protects from JE [108].
In conclusion, therapeutic candidates have anti-

inflammatory, antioxidant and JEV-specific anti-viral ac-
tivities. Importantly, these molecules enter the brain
even though administration is in the periphery. Never-
theless, none of these drugs has yet been approved for
the treatment of JEV infection in humans.

Conclusions
Systemic and neural inflammation contributes to the
anti-viral immune response, but is also responsible for
the brain pathology in JE. The balance between anti-viral
and brain damaging inflammatory effects is probably the
key predictor of the outcome. In that respect, various
cells and factors contribute to that balance but may also
contribute to dysregulation and pathology. Cells of the
monocytic lineage appear to play a central role in in-
flammatory responses and pathogenesis in JE (Fig. 1). In
particular, TNF-α and the axis CCL2-CCR2 has a major
impact in neuroinvasion of immune cells including in-
flammatory monocytes. The activation of TLR3/TLR7
signalling pathways, the activity of CCL2 as well as the
intervention of DC inhibits peripheral inflammatory re-
sponses to JEV. Furthermore, miR-155b and miR-146a
suppress brain inflammation. Finally, therapeutic candi-
dates such as minocycline and PP2 present anti-
inflammatory and anti-viral activity upon JEV infection.
Since all therapeutic candidates inhibit microglia acti-

vation which are a main producer of inflammatory medi-
ators, future directions of the development of
therapeutics should take care of the targeting microglial
activation in order to reduce JE neuroinflammation.
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