65 research outputs found

    Beach profile evolution towards equilibrium from varying initial morphologies

    Get PDF
    The evolution of different initial beach profiles towards the same final beach configuration is investigated based on large-scale experimental data. The same wave condition was performed three times, each time starting from a different initial profile morphology. The three different initial profiles are an intermediate energy profile with an offshore bar and a small swash berm, a plane profile and a low energy profile with a large berm. The three cases evolve towards the same final (equilibrium) profile determined by the same wave condition. This implies that the same wave condition generates different sediment transport patterns. Largest beach changes and differences in hydrodynamics occur in the beginning of the experimental cases, highlighting the coupling between morphology and hydrodynamics for beach evolution towards the same profile. The coupling between morphology and hydrodynamics that leads to the same final beach profile is associated with differences in sediment transport in the surf and swash zone, and is explained by the presence of bar and berm features. A large breaker bar and concave profile promote wave energy dissipation and reduce the magnitudes of the mean near-bed flow velocity close to the shoreline limiting shoreline erosion. In contrast, a beach profile with reflective features, such as a large berm and a small or no bar, increases negative velocity magnitudes at the berm toe promoting shoreline retreat. The findings are summarised in a conceptual model that describes how the beach changes towards equilibrium from two different initial morphologies

    Bed level motions and sheet flow processes in the swash zone: Observations with a new conductivity-based concentration measuring technique (CCM+)

    No full text
    Detailed measurements of bed level motions and sheet flow processes in the lower swash are presented. The measurements are obtained during a large-scale wave flume experiment focusing on swash zone sediment transport induced by bichromatic waves. A new instrument (CCM+) provides detailed phase-averaged measurements of sheet flow concentrations, particle velocities, and bed level evolution during a complete swash cycle. The bed at the lower swash location shows a clear pattern of rapid erosion during the early uprush and progressive accretion during the middle backwash phase. Sheet flow occurs during the early uprush and mid and late backwash phases. Sheet flow sediment fluxes during these instances are highest in the pick-up layer. Sediment entrainment from the pick-up layer occurs not only during instances of high horizontal shear velocities but also in occurrence of wave–backwash interactions. As opposed to oscillatory sheet flow, the pivot point elevation of the sheet flow layer is time-varying during a swash event. Moreover, the upper sheet flow layer concentrations do not mirror the concentrations in the pick-up layer. Both differences suggest that in the lower swash zone the dynamics of the upper sheet flow layer are not only controlled by vertical sediment exchange (such as in oscillatory sheet flows) but are strongly affected by horizontal advection processes induced by the non-uniformity of the flow

    Sand transport processes and bed level changes induced by two alternating laboratory swash events

    Get PDF
    Sand transport processes and net transport rates are studied in a large-scale laboratory swash zone. Bichromatic waves with a phase modulation were generated, producing two continuously alternating swash events that have similar offshore wave statistics but which differ in terms of wave-swash interactions. Measured sand suspension and sheet flow dynamics show strong temporal and spatial variability, related to variations in flow velocity and locations of wave capture and wave-backwash interactions. Suspended and sheet flow layer transport rates in the lower swash zone are generally of same magnitude, but sheet flow exceeds the suspended load transport by up to a factor four during the early uprush. The bed level near the inner surf zone is relatively steady during a swash cycle, but changes of (cm/s) are measured near the mid swash zone where wave-swash interactions lead to strongly non-uniform flows. The two alternating swash events produce a dynamic equilibrium, with bed level changes up to a few mm induced by single swash events, but with net morphodynamic change over multiple events that is two orders of magnitude lower. Most of the intra-swash and the single-event-averaged bed level changes in the swash zone are caused by a redistribution of sediment within the swash. The transport of sediment across the surf-swash boundary is minor at intra-swash time scale, but becomes increasingly significant at swash-averaged time scales or longer (i.e., averaged over multiple swash events)

    No transfer of calibration between action and perception in learning a golf putting task

    Get PDF
    We assessed calibration of perception and action in the context of a golf putting task. Previous research has shown that right-handed novice golfers make rightward errors both in the perception of the perfect aiming line from the ball to the hole and in the putting action. Right-handed experts, however, produce accurate putting actions but tend to make leftward errors in perception. In two experiments, we examined whether these skill-related differences in directional error reflect transfer of calibration from action to perception. In the main experiment, three groups of right-handed novice participants followed a pretest, practice, posttest, retention test design. During the tests, directional error for the putting action and the perception of the perfect aiming line were determined. During practice, participants were provided only with verbal outcome feedback about directional error; one group trained perception and the second trained action, whereas the third group did not practice. Practice led to a relatively permanent annihilation of directional error, but these improvements in accuracy were specific to the trained task. Hence, no transfer of calibration occurred between perception and action. The findings are discussed within the two-visual-system model for perception and action, and implications for perceptual learning in action are raised

    Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Get PDF
    Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR) on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell

    A rapid and sensitive system for recovery of nucleic acids from Mycobacteria sp. on archived glass slides

    Get PDF
    The field of diagnostics continues to advance rapidly with a variety of novel approaches, mainly dependent upon high technology platforms. Nonetheless much diagnosis, particularly in developing countries, still relies upon traditional methods such as microscopy. Biological material, particularly nucleic acids, on archived glass slides is a potential source of useful information both for diagnostic and epidemiological purposes. There are significant challenges faced when examining archived samples in order that an adequate amount of amplifiable DNA can be obtained. Herein, we describe a model system to detect low numbers of bacterial cells isolated from glass slides using (laser capture microscopy) LCM coupled with PCR amplification of a suitable target. Mycobacterium smegmatis was used as a model organism to provide a proof of principle for a method to recover bacteria from a stained sample on a glass slide using a laser capture system. Ziehl-Neelsen (ZN) stained cells were excised and catapulted into tubes. Recovered cells were subjected to DNA extraction and pre-amplified with multiple displacement amplification (MDA). This system allowed a minimum of 30 catapulted cells to be detected following a nested real-time PCR assay, using rpoB specific primers. The combination of MDA and nested real-time PCR resulted in a 30-fold increase in sensitivity for the detection of low numbers of cells isolated using LCM. This study highlights the potential of LCM coupled with MDA as a tool to improve the recovery of amplifiable nucleic acids from archived glass slides. The inclusion of the MDA step was essential to enable downstream amplification. This platform should be broadly applicable to a variety of diagnostic applications and we have used it as a proof of principle with a Mycobacterium sp. model system

    European agricultural landscapes, common agricultural policy and ecosystem services: a review

    Get PDF
    Since the 1950s, intensification and scale enlargement of agriculture have changed agricultural landscapes across Europe. The intensification and scale enlargement of farming was initially driven by the large-scale application of synthetic fertilizers, mechanization and subsidies of the European Common Agricultural Policy (CAP). Then, after the 1990s, a further intensification and scale enlargement, and land abandonment in less favored areas was caused by globalization of commodity markets and CAP reforms. The landscape changes during the past six decades have changed the flows and values of ecosystem services. Here, we have reviewed the literature on agricultural policies and management, landscape structure and composition, and the contribution of ecosystem services to regional competitiveness. The objective was to define an analytical framework to determine and assess ecosystem services at the landscape scale. In contrast to natural ecosystems, ecosystem service flows and values in agricultural landscapes are often a result of interactions between agricultural management and ecological structures. We describe how land management by farmers and other land managers relates to landscape structure and composition. We also examine the influence of commodity markets and policies on the behavior of land managers. Additionally, we studied the influence of consumer demand on flows and values of the ecosystem services that originate from the agricultural landscape

    Influence of storm sequencing on breaker bar and shoreline evolution in large-scale experiments

    Get PDF
    New large-scale experiments on the influence of storm sequencing on beach profile evolution are presented. The experiments comprised three sequences that commenced from the same initial beach profile. Each sequence consisted of two storms of different energy, with each storm followed by a recovery phase. A specific focus of the experiments was the influence of storm chronology as well as the influence of the recovery wave energy and duration on beach evolution. The breaker bar and the shoreline are studied as indicators for the beach response. Both evolve towards an equilibrium location for each wave condition where the breaker bar reaches its equilibrium much faster than the shoreline. Overall, no enhanced beach erosion due to storm sequencing is observed. Despite a similar cumulative wave power of the three sequences, the final beach configuration of each sequence seems to be determined by the last wave condition instead of previous storms. However, storm sequencing is important when the beach profile has not yet fully recovered before being disrupted by the subsequent storm. In this case, the second storm does not necessarily cause further erosion but can result in onshore sediment transport and hence, form part of the recovery. The bulk onshore sediment transport as well as the shoreline recovery rate vary depending on the wave condition and the profile disequilibrium and show a maximum value for a recovery condition with an intermediate wave energy. The very low energy condition that was performed for a long duration (24 hours) generated a near-stationary beach profile with typical features of a reflective beach
    • …
    corecore