32 research outputs found

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    Poor Trail Making Test Performance Is Directly Associated with Altered Dual Task Prioritization in the Elderly – Baseline Results from the TREND Study

    Get PDF
    BACKGROUND: Deterioration of executive functions in the elderly has been associated with impairments in walking performance. This may be caused by limited cognitive flexibility and working memory, but could also be caused by altered prioritization of simultaneously performed tasks. To disentangle these options we investigated the associations between Trail Making Test performance--which specifically measures cognitive flexibility and working memory--and dual task costs, a measure of prioritization. METHODOLOGY AND PRINCIPAL FINDINGS: Out of the TREND study (Tuebinger evaluation of Risk factors for Early detection of Neurodegenerative Disorders), 686 neurodegeneratively healthy, non-demented elderly aged 50 to 80 years were classified according to their Trail Making Test performance (delta TMT; TMT-B minus TMT-A). The subjects performed 20 m walks with habitual and maximum speed. Dual tasking performance was tested with walking at maximum speed, in combination with checking boxes on a clipboard, and subtracting serial 7 s at maximum speeds. As expected, the poor TMT group performed worse when subtracting serial 7 s under single and dual task conditions, and they walked more slowly when simultaneously subtracting serial 7 s, compared to the good TMT performers. In the walking when subtracting serial 7 s condition but not in the other 3 conditions, dual task costs were higher in the poor TMT performers (median 20%; range -6 to 58%) compared to the good performers (17%; -16 to 43%; p<0.001). To the contrary, the proportion of the poor TMT performance group that made calculation errors under the dual tasking situation was lower than under the single task situation, but higher in the good TMT performance group (poor performers, -1.6%; good performers, +3%; p = 0.035). CONCLUSION: Under most challenging conditions, the elderly with poor TMT performance prioritize the cognitive task at the expense of walking velocity. This indicates that poor cognitive flexibility and working memory are directly associated with altered prioritization

    Age-related decrements in dual-task performance: comparison of different mobility and cognitive tasks. A cross sectional study

    Get PDF
    This cross-sectional study investigated the age-related differences in dual-task performance both in mobility and cognitive tasks and the additive dual-task costs in a sample of older, middle-aged and young adults. 74 older adults (M = 72.63±5.57 years), 58 middle-aged adults (M = 46.69±4.68 years) and 63 young adults (M = 25.34±3.00 years) participated in the study. Participants performed different mobility and subtraction tasks under both single- and dual-task conditions. Linear regressions, repeated-measures and one-way analyses of covariance were used, The results showed: significant effects of the age on the dual and mobility tasks (p<0.05) and differences among the age-groups in the combined dual-task costs (p<0.05); significant decreases in mobility performance under dual-task conditions in all groups (p<0.05) and a decrease in cognitive performance in the older group (p<0.05). Dual-task activity affected mobility and cognitive performance, especially in older adults who showed a higher dual-task cost, suggesting that dual-tasks activities are affected by the age and consequently also mobility and cognitive tasks are negatively influenced

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies

    Get PDF
    PMC3547021Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.JH Libraries Open Access Fun
    corecore