128 research outputs found

    The development of endomycorrhizal root systems VIII. Effects of soil phosphorus and fungal colonization on the concentration of soluble carbohydrates in roots

    Get PDF
    Concentrations of phosphorus in shoot and soluble carbohydrates (fructose, glucose, sucrose and fructans) in root were measured in non-mycorrhizal and vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae) leek plants (Allium porrum) raised at six concentrations of soil phosphate. In conditions when an increased concentration of soil phosphate reduced VA mycorrhizal infection, the concentrations of soluble carbohydrates in the root were at a maximum. Therefore the hypothesis that greater concentrations of soluble carbohydrates in roots favour VA mycorrhizal infection is discounted. There was a specific effect of VA mycorrhizas, in that infected roots contained a larger concentration of sucrose than did uninfected roots, in plants with similar phosphorus concentrations in dry matter of shoots. We conclude, first, that increased phosphorus supply from either phosphate addition to soil or VA mycorrhizal infection increases concentration of soluble carbohydrates in leek roots and, secondly, that the VA mycorrhizal root behaves as a particularly strong physiological sink when there is an excess concentration of sucrose in the host

    Suppression of Sproutys Has a Therapeutic Effect for a Mouse Model of Ischemia by Enhancing Angiogenesis

    Get PDF
    Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases

    Analysis of compound heterozygotes reveals that the mouse floxed Pax6 tm1Ued allele produces abnormal eye phenotypes

    Get PDF
    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6(tm1Ued) (Pax6(fl)) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6(fl/fl) and heterozygous Pax6(fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6(fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6(Sey-Neu) (Pax6(−)) null allele. Pax6(fl/−) compound heterozygotes had more severe eye abnormalities than Pax6(+/−) heterozygotes, implying that Pax6(fl) differs from the wild-type Pax6(+) allele. Immunohistochemistry showed that the Pax6(fl/−) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6(fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11248-016-9962-4) contains supplementary material, which is available to authorized users

    Comprehensive Evaluation of Corticospinal Tract Metabolites in Amyotrophic Lateral Sclerosis Using Whole-Brain 1H MR Spectroscopy

    Get PDF
    Changes in the distribution of the proton magnetic resonance spectroscopy (MRS) observed metabolites N-acetyl aspartate (NAA), total-choline (Cho), and total-creatine (Cre) in the entire intracranial corticospinal tract (CST) including the primary motor cortex were evaluated in patients with amyotrophic lateral sclerosis (ALS). The study included 38 sporadic definite-ALS subjects and 70 age-matched control subjects. All received whole-brain MR imaging and spectroscopic imaging scans at 3T and clinical neurological assessments including percentage maximum forced vital capacity (FVC) and upper motor neuron (UMN) function. Differences in each individual metabolite and its ratio distributions were evaluated in the entire intracranial CST and in five segments along the length of the CST (at the levels of precentral gyrus (PCG), centrum semiovale (CS), corona radiata (CR), posterior limb of internal capsule (PLIC) and cerebral peduncle (CP)). Major findings included significantly decreased NAA and increased Cho and Cho/NAA in the entire intracranial CST, with the largest differences for Cho/NAA in all the groups. Significant correlations between Cho/NAA in the entire intracranial CST and the right finger tap rate were noted. Of the ten bilateral CST segments, significantly decreased NAA in 4 segments, increased Cho in 5 segments and increased Cho/NAA in all the segments were found. Significant left versus right CST asymmetries were found only in ALS for Cho/NAA in the CS. Among the significant correlations found between Cho/NAA and the clinical assessments included the left-PCG versus FVC and right finger tap rate, left -CR versus FVC and right finger tap rate, and left PLIC versus FVC and right foot tap rate. These results demonstrate that a significant and bilaterally asymmetric alteration of metabolites occurs along the length of the entire intracranial CST in ALS, and the MRS metrics in the segments correlate with measures of disease severity and UMN function

    Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development

    Get PDF
    BACKGROUND: FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. METHODOLOGY/PRINCIPAL FINDINGS: Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. CONCLUSIONS: We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency

    Sprouty2 and Spred1-2 Proteins Inhibit the Activation of the ERK Pathway Elicited by Cyclopentenone Prostanoids

    Get PDF
    Sprouty and Spred proteins have been widely implicated in the negative regulation of the fibroblast growth factor receptor-extracellular regulated kinase (ERK) pathway. In considering the functional role of these proteins, we explored their effects on ERK activation induced by cyclopentenone prostanoids, which bind to and activate Ras proteins. We therefore found that ectopic overexpression in HeLa cells of human Sprouty2, or human Spred1 or 2, inhibits ERK1/2 and Elk-1 activation triggered by the cyclopentenone prostanoids PGA1 and 15d-PGJ2. Furthermore, we found that in HT cells that do not express Sprouty2 due to hypermethylation of its gene-promoter, PGA1-provoked ERK activation was more intense and sustained compared to other hematopoietic cell lines with unaltered Sprouty2 expression. Cyclopentenone prostanoids did not induce Sprouty2 tyrosine phosphorylation, in agreement with its incapability to activate tyrosine-kinase receptors. However, Sprouty2 Y55F, which acts as a defective mutant upon tyrosine-kinase receptor stimulation, did not inhibit cyclopentenone prostanoids-elicited ERK pathway activation. In addition, Sprouty2 did not affect the Ras-GTP levels promoted by cyclopentenone prostanoids. These results unveil both common and differential features in the activation of Ras-dependent pathways by cyclopentenone prostanoids and growth factors. Moreover, they provide the first evidence that Sprouty and Spred proteins are negative regulators of the ERK/Elk-1 pathway activation induced not only by growth-factors, but also by reactive lipidic mediators

    3T3 Cell Lines Stably Expressing Pax6 or Pax6(5a) – A New Tool Used for Identification of Common and Isoform Specific Target Genes

    Get PDF
    Pax6 and Pax6(5a) are two isoforms of the evolutionary conserved Pax6 gene often co-expressed in specific stochiometric relationship in the brain and the eye during development. The Pax6(5a) protein differs from Pax6 by having a 14 amino acid insert in the paired domain, causing the two proteins to have different DNA binding specificities. Difference in functions during development is proven by the fact that mutations in the 14 amino acid insertion for Pax6(5a) give a slightly different eye phenotype than the one described for Pax6. Whereas quite many Pax6 target genes have been published during the last years, few Pax6(5a) specific target genes have been reported on. However, target genes identified by Pax6 knockout studies can probably be Pax6(5a) targets as well, since this isoform also will be affected by the knockout. In order to identify new Pax6 target genes, and to try to distinguish between genes regulated by Pax6 and Pax6(5a), we generated FlpIn-3T3 cell lines stably expressing Pax6 or Pax6(5a). RNA was harvested from these cell lines and used in gene expression microarrays where we identified a number of genes differentially regulated by Pax6 and Pax6(5a). A majority of these were associated with the extracellular region. By qPCR we verified that Ncam1, Ngef, Sphk1, Dkk3 and Crtap are Pax6(5a) specific target genes, while Tgfbi, Vegfa, EphB2, Klk8 and Edn1 were confirmed as Pax6 specific target genes. Nbl1, Ngfb and seven genes encoding different glycosyl transferases appeared to be regulated by both. Direct binding to the promoters of Crtap, Ctgf, Edn1, Dkk3, Pdgfb and Ngef was verified by ChIP. Furthermore, a change in morphology of the stably transfected Pax6 and Pax6(5a) cells was observed, and the Pax6 expressing cells were shown to have increased proliferation and migration capacities
    corecore