396 research outputs found

    Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the White Stork (Ciconia ciconia)

    Get PDF
    We studied variations in the size of breeding colonies and in breeding performance of White Storks Ciconia ciconia in 2006–2008 in north-east Algeria. Each colony site was characterized using 12 environmental variables describing the physical environment, land-cover categories, and human activities, and by three demographic parameters: the number of breeding pairs, the number of pairs with chicks, and the number of fledged chicks per pair. Generalized linear mixed models and the self-organizing map algorithm (SOM, neural network) were used to investigate effects of biotic, abiotic, and anthropogenic factors on demographic parameters and on their relationships. Numbers of breeding pairs and of pairs with chicks were affected by the same environmental factors, mainly anthropogenic, which differed from those affecting the number of fledged chicks per pair. Numbers of fledged chicks per pair was not affected by colony size or by the number of nests with chicks. The categorization of the environmental variables into natural and anthropogenic, in connection with demographic parameters, was relevant to detect factors explaining variation in colony size and breeding parameters. The SOM proved a relevant tool to help determine actual dynamics in White Stork colonies, and thus to support effective conservation decisions at a regional scale

    The role of P2X7 in pain and inflammation

    Get PDF
    The P2X7 purinoceptor is unique amongst the P2X receptor family in that its activation is able to stimulate the release of mature, biologically active interleukin-1ÎČ (IL-1ÎČ), as well as a variety of other proinflammatory cytokines. Coupled with the predominate localisation of this receptor to immunocytes of haemopoetic origin, this receptor is an obvious candidate to play a major and pivotal role in processes of pain and inflammation. Using genetically modified animals that lack the P2X7 receptor, several investigators have shown that these mice do indeed demonstrate a blunted inflammatory response, and fail to develop pain following both inflammatory and neuropathic insult. These animals also show altered cytokine production in response to inflammatory stimulus, which is far broader than merely modulation of IL-1ÎČ release. In this short article, we review the role of the P2X7 receptor in modulating the release of cytokines and other mediators, and discuss the findings made from P2X7 receptor-deficient animals. As well as highlighting outstanding questions regarding this intriguing receptor, we also speculate as to the potential therapeutic benefit of P2X7 receptor modulation

    Diagnosing Autism Spectrum Disorders in Adults: the Use of Autism Diagnostic Observation Schedule (ADOS) Module 4

    Get PDF
    Autism Diagnostic Observation Schedule (ADOS) module 4 was investigated in an independent sample of high-functioning adult males with an autism spectrum disorder (ASD) compared to three specific diagnostic groups: schizophrenia, psychopathy, and typical development. ADOS module 4 proves to be a reliable instrument with good predictive value. It can adequately discriminate ASD from psychopathy and typical development, but is less specific with respect to schizophrenia due to behavioral overlap between autistic and negative symptoms. However, these groups differ on some core items and explorative analyses indicate that a revision of the algorithm in line with Gotham et al. (J Autism Dev Disord 37: 613–627, 2007) could be beneficial for discriminating ASD from schizophrenia

    Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the <it>in vivo </it>and <it>in vitro </it>effects of Kihi-to on memory, neurite growth and synapse reconstruction.</p> <p>Methods</p> <p>Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of AÎČ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.</p> <p>Results</p> <p>Administration of Kihi-to for consecutive 3 days resulted in marked improvements of AÎČ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after AÎČ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. AÎČ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in AÎČ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the AÎČ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited AÎČ(25–35)-induced calcium entry.</p> <p>Conclusion</p> <p>In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.</p

    The heritability of beta cell function parameters in a mixed meal test design

    Get PDF
    Aims/hypothesis: We estimated the heritability of individual differences in beta cell function after a mixed meal test designed to assess a wide range of classical and model-derived beta cell function parameters. Methods: A total of 183 healthy participants (77 men), recruited from the Netherlands Twin Register, took part in a 4 h protocol, which included a mixed meal test. Participants were Dutch twin pairs and their siblings, aged 20 to 49 years. All members within a family were of the same sex. Insulin sensitivity, insulinogenic index, insulin response and postprandial glycaemia were assessed, as well as model-derived parameters of beta cell function, in particular beta cell glucose sensitivity and insulin secretion rates. Genetic modelling provided the heritability of all traits. Multivariate genetic analyses were performed to test for overlap in the genetic factors influencing beta cell function, waist circumference and insulin sensitivity. Results: Significant heritabilities were found for insulinogenic index (63%), beta cell glucose sensitivity (50%), insulin secretion during the first 2 h postprandial (42-47%) and postprandial glycaemia (43-52%). Genetic factors influencing beta cell glucose sensitivity and insulin secretion during the first 30 postprandial min showed only negligible overlap with the genetic factors that influence waist circumference and insulin sensitivity. Conclusions/interpretation: The highest heritability for postprandial beta cell function was found for the insulinogenic index, but the most specific indices of heritability of beta cell function appeared to be beta cell glucose sensitivity and the insulin secretion rate during the first 30 min after a mixed meal. © The Author(s) 2011

    Can cognitive enhancers reduce the risk of falls in older people with Mild Cognitive Impairment? A protocol for a randomised controlled double blind trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Older adults with cognitive problems have a higher risk of falls, at least twice that of cognitively normal older adults. The consequences of falls in this population are very serious: fallers with cognitive problems suffer more injuries due to falls and are approximately five times more likely to be admitted to institutional care. Although the mechanisms of increased fall risk in cognitively impaired people are not completely understood, it is known that impaired cognitive abilities can reduce attentional resource allocation while walking. Since cognitive enhancers, such as cholinesterase inhibitors, improve attention and executive function, we hypothesise that cognitive enhancers may reduce fall risk in elderly people in the early stages of cognitive decline by improving their gait and balance performance due to an enhancement in attention and executive function.</p> <p>Method/Design</p> <p>Double blinded randomized controlled trial with 6 months follow-up in 140 older individuals with Mild Cognitive Impairment (MCI). Participants will be randomized to the intervention group, receiving donepezil, and to the control group, receiving placebo. A block randomization by four and stratification based on fall history will be performed. Primary outcomes are improvements in gait velocity and reduction in gait variability. Secondary outcomes are changes in the balance confidence, balance sway, attention, executive function, and number of falls.</p> <p>Discussion</p> <p>By characterizing and understanding the effects of cognitive enhancers on fall risk in older adults with cognitive impairments, we will be able to pave the way for a new approach to fall prevention in this population. This RCT study will provide, for the first time, information regarding the effect of a medication designed to augment cognitive functioning have on the risk of falls in older adults with Mild Cognitive Impairment. We expect a significant reduction in the risk of falls in this vulnerable population as a function of the reduced gait variability achieved by treatment with cognitive enhancers. This study may contribute to a new approach to prevent and treat fall risk in seniors in early stages of dementia.</p> <p>Trial Registration</p> <p>The protocol for this study is registered with the Clinical Trials Registry, identifier number: NCT00934531 <url>http://www.clinicaltrials.gov</url></p

    Glial cell type-specific changes in spinal dipeptidyl peptidase 4 expression and effects of its inhibitors in inflammatory and neuropatic pain

    Get PDF
    Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, which did not change significantly either in carrageenan-induced inflammatory or partial nerve ligation-generated neuropathic states. In naive animals, microglia and astrocytes expressed DPP4 protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and interact with endogenous opioid systems

    Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    Get PDF
    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes

    Single Parenting and Child Behavior Problems in Kindergarten

    Get PDF
    Two waves of data from a sample of 89 poor and near-poor single black mothers and their preschool children were used to study the influences of parenting stress, physical discipline practices, and nonresident fathers’ relations with their children on behavior problems in kindergarten. The results indicate that higher levels of parent stress, more frequent spanking, and less frequent father–child contact at time 1 were associated with increased teacher-reported behavior problems at time 2. In addition, more frequent contact between nonresident biological fathers and their children moderated the negative effect of harsh discipline by mothers on subsequent child behavior problems. Specifically, when contact with the father was low, maternal spanking resulted in elevated levels of behavior problems; with average contact, this negative effect of spanking was muted; and with high contact, spanking was not associated with increased behavior problems in kindergarten. The implications of these findings for future research and policy are discussed
    • 

    corecore