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Glial cell type-specific changes 
in spinal dipeptidyl peptidase 
4 expression and effects of its 
inhibitors in inflammatory and 
neuropatic pain
Kornél Király1, Márk Kozsurek  2, Erika Lukácsi2, Benjamin Barta2, Alán Alpár2, Tamás 
Balázsa2, Csaba Fekete3, Judit Szabon3, Zsuzsanna Helyes4,5, Kata Bölcskei4, Valéria Tékus4, 
Zsuzsanna E. Tóth2, Károly Pap6, Gábor Gerber2 & Zita Puskár2

Altered pain sensations such as hyperalgesia and allodynia are characteristic features of various pain 
states, and remain difficult to treat. We have shown previously that spinal application of dipeptidyl 
peptidase 4 (DPP4) inhibitors induces strong antihyperalgesic effect during inflammatory pain. In this 
study we observed low level of DPP4 mRNA in the rat spinal dorsal horn in physiological conditions, 
which did not change significantly either in carrageenan-induced inflammatory or partial nerve 
ligation-generated neuropathic states. In naïve animals, microglia and astrocytes expressed DPP4 
protein with one and two orders of magnitude higher than neurons, respectively. DPP4 significantly 
increased in astrocytes during inflammation and in microglia in neuropathy. Intrathecal application 
of two DPP4 inhibitors tripeptide isoleucin-prolin-isoleucin (IPI) and the antidiabetic drug vildagliptin 
resulted in robust opioid-dependent antihyperalgesic effect during inflammation, and milder but 
significant opioid-independent antihyperalgesic action in the neuropathic model. The opioid-mediated 
antihyperalgesic effect of IPI was exclusively related to mu-opioid receptors, while vildagliptin affected 
mainly delta-receptor activity, although mu- and kappa-receptors were also involved. None of the 
inhibitors influenced allodynia. Our results suggest pathology and glia-type specific changes of DPP4 
activity in the spinal cord, which contribute to the development and maintenance of hyperalgesia and 
interact with endogenous opioid systems.

DPP4 is a type II integral transmembrane glycoprotein expressed on many cell types, but appears also in soluble 
form in body fluids including cerebrospinal fluid1. As a serine protease, DPP4 cleaves dipeptides from oligo-
peptides and proteins containing proline/alanine in the penultimate position. DPP4 processes neuropeptides, 
hormones, cytokines and chemokines leading to their biological activation or inactivation. Potential substrates 
include incretins (glucagon-like peptide-1 and -2, and glucose-dependent insulinotropic polypeptide), brady-
kinin, Substance P (SP), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP) and tumour necrosis 
factor (TNF-α)2–4. In addition to the enzymatic activity, DPP4 has binding sites for adenosine deaminase (ADA)5 
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and different extracellular matrix proteins like collagen and fibronectin6. DPP4 is also known as cell surface anti-
gen CD26 on T-lymphocytes7,8 and as a receptor for Coronaviruses9.

Incretins are the most familiar substrates of DPP4 since these hormones are major regulators of postprandial 
insulin secretion. Inhibition of DPP4 increases the incretin levels and prolongs the postprandial insulin action. 
Therefore DPP4 has become a major target for the therapy of type II diabetes. Application of newly developed 
DPP4 inhibitors revealed several physiological and pathological processes such as lipid metabolism, myocardial, 
renal and liver functions, atherosclerosis and inflammation in which DPP4 is involved10,11.

Control of chronic pain associated with tissue injury, inflammation or ongoing diseases have made no pro-
gress for decades. Current analgesics are at best moderately effective and associated with intolerable side effects. 
Therefore, development of novel therapeutic interventions for pain relief is one of the chief challenges for medical 
sciences. It is well established that altered pain sensations such as hyperalgesia (an increased response to noxious 
stimuli), allodynia (painful response to normally innocuous stimuli) and spontaneous pain are characteristic 
features of various pain states12. Previously we have demonstrated dramatic reduction of mechanical hyperalgesia 
following spinal application of DPP4 inhibitors (IPI and vildagliptin) in subacute inflammation and this action 
was naloxone reversible suggesting an opioid receptor-mediated effect. None of the inhibitors changed the nocic-
eptive threshold in acute nociceptive tail-flick test13. Analgesic and anti-inflammatory effects of DPP4 inhibitors 
were also showed in chronic inflammatory models in mice14.

Machinery of the endogenous opioid system has been intensely investigated and clarified in recent decades. 
Although inducing/regulating the endogenous opioid machinery would provide a powerful tool to control pain 
propagation, this possibility has remained largely unexploited. Here, we identify DPP4 in the spinal dorsal horn, 
show that its expression changes during pathological conditions, and demonstrate that it shapes opioid signal-
ling in a receptor- and treatment-specific manner. Although synaptic DPP4 may have a key role in neuronal 
mechanisms of pain propagation, we identify glial cells as inducible DPP4-batteries, in this way playing a role in 
hyperalgesia and opioid signalling.

Results
DPP4 transcripts in the rat spinal dorsal horn in physiological, inflammatory and neuropathic 
states. Taqman qPCR detected DPP4 mRNA in the dorsal horn of L5 spinal segments taken from control, 
inflamed and neuropathic rats. Neither carrageenan treatment nor neuropathic condition caused significant alter-
ation in the DPP4 mRNA levels (relative quantities in control, carrageenan-induced inflammation and neuro-
pathic groups: 1.0 ± 0.2 vs. 0.7 ± 0.1 vs. 1.3 ± 0.3, one-way ANOVA P = 0.301; Fig. 1a).

DPP4 mRNA showed a low expression by in situ hybridization in the spinal dorsal horn of L4-L6 segments. 
While the grain density observed in sections hybridized using the sense probe was equal to the background, a 
significant signal was detected with the antisense probe (antisense: n = 27, median = 110.4, 25% at 80.7 and 75% 
at 135.5; sense: n = 19, median = 0.0, 25% at 0.0, 75% at 21.7; Mann-Whitney Rank Sum Test P < 0,001). DPP4 
mRNA was distributed evenly within the dorsal horn, and no significant differences among the experimental 
groups were detected (control: n = 9, 1.2 ± 0.2; inflamed: n = 9, 1.1 ± 0.1; neuropathic: n = 9, 1.0 ± 0.1; one-way 
ANOVA, P = 0.21; Fig. 1b).

The data obtained from both qPCR and in situ hybridisation studies clearly demonstrated that DPP4 mRNA 
exists in the spinal dorsal horn and its quantity does not change either in inflammatory or neuropathic pain states.

DPP4 protein expression in physiological condition and its changes during inflammation and 
neuropathy in the spinal dorsal horn. Western blot banding pattern of DPP4 originated from rat spinal 
dorsal horn appeared very similar to that one which was taken from human white (pre)adipocytes using an anti-
body different from the one used in the current experiments15. Western-blot analysis in this study demonstrated 
an elevated protein level in the inflamed spinal cord being significantly different from those found in naïve and 
neuropathic spinal cords (control: 0.16 ± 0.05; inflamed: 0.54 ± 0.06; neuropathic: 0.31 ± 0.06; one-way ANOVA, 
Holm-Sidak method, P = 0.023; Fig. 1c-d).

DPP4 immunoreactivity in the spinal cord appeared in naïve, inflamed and also in neuropathic animals. 
Densitometry of the DPP4 immunolabelling showed a significant increase in the medial two third of the dorsal 
horn (corresponding to the hind paw) during inflammation compared to naïve and neuropathic conditions (con-
trol: n = 7, 3.42 ± 0.38; inflamed: n = 10, 5.66 ± 0.80; neuropathic: n = 8, 3.18 ± 0.44; one-way ANOVA P = 0,016; 
Fig. 1e).

In contrast to DPP4 mRNA, the overall amount of DPP4 protein detected by Western-blot and immunohisto-
chemistry significantly increased in the spinal dorsal horn during inflammation and did not change in neuropa-
thy compared to the physiological state.

DPP4 immunoreactivity and its changes in individual cell types during pathology. Punctate 
immunostaining was detected in neuronal cell bodies (Fig. 2a) and also in axon terminals in naive animals. 
Puncta representing DPP4 were embedded in synaptophysin stained elements suggesting close relationship 
between synaptic and DPP4 activity in many cases (Fig. 3). DPP4-immunopositive dots that appeared on the 
surface of MAP2 labelled dendrites were always associated with synaptophysin positivity (Fig. 3a) suggesting 
that dendrites did not express the enzyme but received synapses from DPP4-containing boutons. The enzyme 
appeared both in vesicular glutamate transporter 2 (VGLUT2) immunolabelled excitatory (Fig. 3c) and in vesic-
ular GABA transporter (VGAT) positive inhibitory axon terminals (Fig. 3d), as well as in CGRP stained primary 
afferent boutons (Fig. 3b). DPP4 labelling also occurred in GFAP-positive astrocytes (Fig. 2b) and IBA1-stained 
microglia cells (Fig. 2c). In naive rats, the density of the enzyme staining was the highest in astrocytes and differed 
significantly from that in other cell types. DPP4 density was also significantly higher in microglia than in neurons 
(astrocyte: n = 109, median = 18652.86, 25% at 8185.08, 75% at 31208.90; microglia: n = 83, median = 3196.484, 
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25% at 2338.702, 75% at 5189.73; neuron: n = 96, median = 343.95, 25% at 247.46, 75% at 420.69; Kruskal-Wallis 
one-way ANOVA on ranks, Dunn’s method at P < 0.001). During inflammation, DPP4 expression increased 
significantly in astocytes but not in microglia and neurons. Significant increase in the DPP4 immunoreac-
tivity appeared only in microglia and significant decrease in neurons in the Seltzer model (astrocyte control: 
n = 109, median = 18652.86, 25% at 8185.08, 75% at 31208.90, inflammation: n = 112, median = 33379.28, 25% 
at 7651.47, 75% at 43072.64, Seltzer: n = 80, median = 15583.72, 25% at 8802.54, 75% at 22288.04, Kruskal-Wallis 
one-way ANOVA on ranks, Dunn’s method at P < 0.001; microglia control: n = 83, median = 3196.48, 25% at 
2338.70, 75% at 5189.76, inflammation: n = 86, median = 2996,71, 25% at 2446.60, 75% at 4359.58, Seltzer: 
n = 67, median = 4926.80, 25% at 3312.32, 75% at 6493.72, Kruskal-Wallis one-way ANOVA on ranks, Dunn’s 
method P < 0.001; neuron control: n = 96, median = 343.95, 25% at 247.46, 75% at 420.69, inflamation: n = 64, 
median = 312.08, 25% at 203.53, 75% at 416.45, Seltzer: n = 64 median = 278.46, 25% at 213.09, 75% at 362.67, 
Kruskal-Wallis one-way ANOVA on ranks, Dunn’s method at P < 0.001, in all cases n means the number of the 
analysed optical sections of neuronal or glial elements). It should be noted that DPP4 immunolabelling existed 
not only in the membranes of the different cell types but also in their intracellular compartments.

Taking the qualitative and quantitative data together (Table 1, Fig. 4), DPP4 immunostaining was detected in 
neuronal cell bodies and also in excitatory and inhibitory axon terminals in naïve animals. Densitometric anal-
ysis showed that in naïve animals, microglia and astrocytes expressed DPP4 protein with one and two orders of 

Figure 1. DPP4 mRNA and protein expression in the dorsal horn of control, carrageenan treated and 
neuropathic rats. DPP4 mRNA expression in the dorsal horn of the spinal cord assessed by qPCR (a) and in 
situ hybridization (b) did not show significant difference among the three experimental groups (mean ± SEM, 
n = 6–9, one-way ANOVA, P = 0.30 and P = 0.21 for qPCR and ISH, respectively). In Western-blot experiments 
goat DPP4 antibody labelled lane at 110 kDa in spinal dorsal horn lysates taken from naive, inflamed and 
neuropathic animals (c). The full gel is shown in Supplementary Figure S1. Significantly increased DPP4 
protein levels were detected in carrageenan-induced inflammation measured both by Western-blotting (d) and 
quantitative immunohistochemistry (e). (Values are given as mean ± SEM, n = 7–10, one-way ANOVA followed 
by Holm-Sidac post hoc test: P = 0.023 for Western blot experiments and one-way ANOVA with Student-
Neuman-Keuls post hoc test: P = 0.016 for densitometry).
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magnitude higher than neurons, respectively. Furthermore, DPP4 expression significantly increased in astrocytes 
and did not change in other cell types during inflammation. In neuropathic conditions, DPP4 immunoreactivity 
significantly increased in microglia, decreased in neurons and remained unchanged in astrocytes.

Opioid receptor types involved in the antihyperalgesic effect of DPP4 inhibitors in inflammation.  
To challenge the involved opioid receptor types, selective opioid receptor antagonists were applied spinally 
together with two different DPP4 inhibitors in carrageenan-induced subacute inflammation. I.t. application of 
30 nmol/rat IPI and 3 nmol/rat vildagliptin eliminated 93.8 ± 1.2% and 88.3 ± 1.6% of mechanical hyperalge-
sia measured by the Randall-Selitto test in intraplantar carrageenan-induced inflammation. Co-administration 
of the mu-opioid receptor (MOR)-selective inhibitor CTAP reduced the antihyperalgesic effect of IPI to 
−5.0 ± 4.5%, while following co-application of kappa-receptor (KOR) antagonist gNTI and the delta-opioid 
receptor (DOR) antagonist TIPP[Ψ] the antihyperalgesic effect of IPI remained at 92.2 ± 2.4% and 90.1 ± 3.0%, 
respectively. Following co-administration of mu- and kappa-antagonists, antihyperalgesic effect of vildagliptin 
was 51.0 ± 4.4% and 45.8 ± 4.2%, respectively, while the delta-antagonist TIPP[Ψ] completely blocked the antihy-
peralgesic effect of vildagliptin by reducing its antihyperalgesic effect to −1.4 ± 2.1% (Fig. 5).

These results show that both IPI and vildagliptin resulted in robust but distinct opioid-dependent antihy-
peralgesic effects during inflammation. The antihyperalgesic effect of IPI was fully blocked by the selective 
mu-opioid receptor antagonist and no decrease was observed by the selective kappa- and delta-antagonists. In 
case of vildagliptin, the antihyperalgesic effect of this inhibitor was completely blocked by selective delta-receptor 
antagonist while selective mu- and kappa-receptor antagonists also decreased the effect significantly.

Effects of DPP4 inhibitors in neuropathy. Different modalities of hyperalgesia and allodynia appear not 
only in inflammatory conditions but also in neuropathic pain states. None of the tested DPP4 inhibitors had sig-
nificant effect on mechanical and cold allodynia, while both i.t. IPI and vildagliptin had a significant mechanical 
antihyperalgesic effect measured with the Randall-Selitto test one week after partial sciatic nerve ligation with 
MPE values of 37.9 ± 12.4% and 41.8 ± 10.4%, respectively. In contrast to inflammatory states, the nonselective 
opiate antagonist naltrexone (NTX) did not affect the antihyperalgesic action of the DPP4 inhibitors signifficantly 
in neuropathic conditions suggesting completely different actions of the enzyme on hyperalgesia in the two pain 
states (Fig. 6).

Discussion
A high level of DPP4 expression in the developing brain and spinal cord was described, which dramatically 
decreased in adults, but persisted in leptomeningeal cells and capillary endothelial cells of the choroid plexus16–18. 
DPP4 mRNA was detected in cortical areas in adult naïve animals and its level did not change after cerebral 

Figure 2. DPP4 immunoreactivity of different cell types in the spinal dorsal horn. DPP4-immunoreactive 
puncta appeared in Nissl stained neurons (row a), GFAP labelled astrocytes (row b) and IBA1 positive 
microglial cells (row c). Co-staining with mouse monoclonal antibody against the full length rat CD26 
protein (DPP4mo, column 2) and polyclonal goat DPP4 antibody that was raised against the synthetic peptide 
C-PPHFDKSKKYP representing the internal region of DPP4 (DPP4gt, column 3) labelled the same puncta in 
all three cell types demonstrating the specificity of the two antibodies (arrows). All the images are single optical 
sections. Scalebar: 5 μm.



www.nature.com/scientificreports/

5Scientific RePoRts |  (2018) 8:3490  | DOI:10.1038/s41598-018-21799-8

ischemia. In contrast, DPP4 immunoreactivity was not found in the same regions in physiological state but its 
expression appeared in microglia, neurons and astrocytes in different time points during cerebral ischaemia19. 
We are first to show that transcripts as well as the protein of DPP4 are detectable in the adult mammalian spinal 
dorsal horn. Similarly to the effects of ischemic injuries in the brain, our q-PCR and in situ hybridization analysis 
showed that DPP4 mRNA level was not influenced by inflammation or neuropathy in the spinal dorsal horn. The 
same treatments, however, caused marked changes of DPP4 protein level in this region. Inflamation caused a 
five-fold increase in DPP4 protein level suggesting a very potent posttranscriptional control of DPP4 expression 
during quickly developing inflammation and ischemia in neurons and glia. Our understanding of DPP4 molecu-
lar regulation is far from being complete. Studies on lymphocytes have demonstrated that while retinoic acid and 
interferon administration result in an increase of DPP4 transcription, IL12 upregulates only DPP4 translation 
and TNFα merely decreases the cell surface expression of DPP411,20 suggesting a very complex mechanism of the 
regulation of DPP4 activity.

High resolution confocal laser scanning imaging revealed that neuronal DPP4 was typically confined to pre-
synaptic, and also to somatic domains, with significantly decreased densities in neuropathy. In contrast, astrocytes 
were amply decorated with DPP4-immunoreactive profiles, with significantly increasing density in inflammatory 
but not in neuropathic states. Finally, a third-party involvement in spinal neuropathic mechanisms was likely 

Figure 3. DPP4 immunoreactivity in various types of axon terminals. DPP4 immunolabelling on MAP2-
stained dendritic surfaces was associated with synaptophysin (SYN) indicating that not the dendrites but 
the axon terminals express the receptor (row a). DPP4 is expressed by the majority of peptidergic (CGRP-
containing) C primary afferent terminals (row b) and coexpression of DPP4 with SYN and VGLUT2 (row c) or 
VGAT (row d) suggests that DPP4 is present both in excitatory and inhibitory nerve endings. All the images are 
single optical sections. Scalebar: 5 μm.

Cell types Inflammation Neuropathy

Neurons — ↓

Astrocytes ↑ —

Microglia — ↑

Table 1. Changes of DPP4 expression of different cell types in pathological conditions. A brief summary of how 
DPP4 expression changes in different cell types in different pathological conditions. Increases and decreases are 
indicated by upward and downward arrows, respectively.
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reflected by the increase of DPP4 expression in microglia which showed an obvious protein expression level in 
control animals, too.

Detectable levels of the DPP4 protein in healthy spinal cord, in contrast to brain tissue, could be due to the 
quick on-demand regulatory role of the moonlight protein in nociceptive processes where SP and NPY offer 
ample and typical substrates for DPP4. The presynaptic location of DPP4 in neurons suggests a possible role for 
this protein in synaptic physiology. On the other hand, glial expression of DPP4 which is significantly upregulated 
in a pathology and cell type specific manner opens further aspects to detect alternative roles of this protein in 
different pain states.

Previously, we have demonstrated that DPP4 inhibitors do not change the nociceptive threshold in acute 
nociceptive condition13. In contrast to this, robust antihyperalgesic effects of different DPP4 inhibitors such as 
IPI, vildagliptin and sitagliptin in carrageenan-induced and complete Freund’s adjuvant (CFA)-provoked chronic 
inflammatory models have been reported previously14,21. In addition to the mechanical and heat hyperalgesia, 
mechanical and heat allodynia may also exist in the carrageenan-induced inflammatory model22. The two modal-
ities of allodynia were not measured in this study since the effects of the non-noxious heat or mechanical stimuli 
cannot be detected very precisely because of the extreme large paw swelling. In the other hand, touch sensitivity 
measured by dynamic plantar aesthesiometry (DPA) in CFA-induced chronic inflammatory model showed no 

Figure 4. DPP4 immunoreactivity in glial cells in control, inflamed and neuropathic animals. Representative 
confocal images of the spinal dorsal horn obtained from control (a), inflamed (b) and neuropathic (c) animals 
demonstrate that DPP4 is expressed predominantly by glial cells (arrows: microglia, arrowheads: astrocytes). 
All the images are single optical sections. Scalebar: 10 μm. Integrated density values (d) demonstrate that the 
majority of DPP4-immunopositivity is related to GFAP-labelled astrocytes. A proportion of DPP4 labelling 
belongs to microgila and very few DPP4 is expressed by neuronal cell bodies. Inflammation significantly 
increased the DPP4 expression on astocytes but not on the other cell types. In contrast to inflammation DPP4 
density was significantly higher on microglia and lower in neurons during neuropathy (Kruskal-Wallis One way 
ANOVA on ranks, Dunn’s Method, P < 0,001).
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changes following intrathecal application of DPP4 inhibitors, although Randall-Selitto test demonstrated the anti-
hyperalgesic effect (unpublished observation). These data suggest the spinal antihyperalgesic but not the antiallo-
dynic effect of the DPP4 inhibitors in inflammatory conditions.

The antihyperalgesic action of IPI and vildagliptin appeared opioid-mediated in the carrageenan-induced 
inflammation since the nonselective opioid receptor antagonist naloxone/naltrexone reversed their effects13,21. 
In this study, we examined the opioid receptors involved by using selective antagonists against MOR, DOR, 
and KOR and measuring mechanical hyperalgesia in carrageenan-induced acute inflammation. Surprisingly, the 
antihyperalgesic effect of the IPI exclusively related to MOR, while vildagliptin affected mainly DOR but had also 
effect on MOR and KOR. It has been demonstrated previously that IPI does not activate MORs directly23. Both 
IPI and vildagliptin are inhibitors of the DPP4 but IPI with a penultimate proline is also a substrate of the enzyme 
and its competitive inhibition is a kinetic artefact24. Although both inhibitors target the active site of the enzyme, 
the extent of inhibition depends on the residual interaction between drug and active site residues. X-ray crystal-
lography analysing the co-crystal structure of different inhibitors with DPP4 demonstrated that the inhibitors, 
but not the substrates could bind well beyond the S2 subsite to increase their inhibitory activity25. Taking all these 
together supports that different residual interactions of the two inhibitors can affect the DPP4 activity in different 
ways.

Endogenous opioids, especially enkephalins, dynorphins and endorphins, are released from spinal and 
supraspinal sites during acute inflammation, but are degraded very quickly by extremely high enzymatic activ-
ity26. A common feature of these opioids is that they can activate each opioid receptor with different potencies. 

Figure 5. Antihyperalgesic effect of DPP4 inhibitor IPI and vildagliptin in carrageenan-induced inflammation. 
(a) Antihyperalgesic effect of IPI has been completely abolished by co-administartion of CTAP, but (b) neither 
TIPP[Ψ] nor (c) gNTI altered IPI-evoked antihyperalgesia. (d) Antihyperalgesic effect of vildagliptin was 
significantly reduced by CTAP and (f) gNTI, but was completely eliminated when (e) TIPP[Ψ] was co-injected. 
Inhibitory effects of opioid antagonists on IPI and vildagliptin related antihyperalgesia are summarized on bar 
graphs (g) and (h) constructed from data recorded 210 min after i.t. drug application. Comparisons were made 
with two-way ANOVA, Bonferoni post hoc test; +p < 0.05; +++p < 0.001 (a–f) and one-way ANOVA followed 
by Dunnett’s post hoc test. ***p < 0.001 (g and h). Asterisks always indicate significant differences between the 
time-matching points of DPP4 inhibitor and DPP4 inhibitor + opioid antagonist curves. Data on each curves and 
bars are given as mean and SEM.
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Since both IPI and vildagliptin are very selective DPP4 inhibitors, it is very unlikely that it has inhibitory effect on 
opioid degrading enzymes. On the other hand, it has been demonstrated that glial cells express opioid receptors 
and can synthesize endogenous opioids27–29. These processes are at least partly regulated by inflammatory medi-
ators including IL-1β28. The interaction between the two systems is mutual, since the endogeneous opioids also 
have effect on the production of inflammatory mediators released by glial cells30.

Glucagon-like peptide-1 (GLP1) receptor activation results in β-endorphin release from microglia and blocks 
inflammatory nociception and mechanical allodynia in the spinal nerve ligation model27,31. In this study, we have 
found an increase in the expression of DPP4 both in microglia and astrocytes that can facilitate the degradation 
of many peptides including GLP1. Systemic increase of GLP1 peptide has been detected during inflammation32 
and IPI/vildagliptin blocking DPP4 activity may increase further the GLP1 level in the spinal cord and induce 
β-endorphin release from microglia.

In this study, we have found a substantial increase in the expression of DPP4 in astrocytes during inflamma-
tion. It has been also demonstrated that astrocytes can synthesize both proenkephalins and dynorphins33,34 that 
makes them good candidates for the source of these peptides. It has been shown that purinergic and toll-like 
receptor (TLR) activation results in dynorphin-A and -B releases from this glia type34 and proenkephalin release 
was also detected in cultured astrocytes33. However, the conditions in which astrocytes release proenkephalin in 
vivo have not been determined.

Recent in vitro studies in monocytes demonstrated that DPP4 inhibitors suppressed TLR4 mediated upregu-
lation of proinflammatory cytokines including IL-1β, IL-635, NLRP3 inflammasome which is a key molecule to 

Figure 6. Antinociceptive effects of the DPP4 inhibitor IPI and vildagliptin in chronic neuropathic condition 
induced by partial sciatic nerve ligation. DPP4 inhibitors were ineffective in dynamic plantar aesthesiometer 
(a and d) and noxious cold sensitivity (b and e) tests. In Randall-Selitto test, both IPI and vildagliptin had 
antihyperalgesic effect which was not antagonized by NTX (c and f). Maximal possible effects (MPE%) of 
DPP4 inhibitors alone or in combination with subtype specific opioid antagonists is given on bar graphs (g–i). 
Comparisons were made with two-way ANOVA, Bonferoni post hoc test; +p < 0.05; ++p < 0.01; +++p < 0.001 
(a–f) and one-way ANOVA followed by Dunnett’s post hoc test; *p < 0.1 **p < 0.01 (g–i). Data on each curves 
and bars are given as mean and SEM.
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process and release of IL-1β and IL-1836, and extracellular-regulated kinase (ERK) activation that has also critical 
role in expression of inflammatory cytokines37. These data suggest an important interaction between TLR4 and 
DPP4 activity which may exist also in glial cells and regulates the synthesis and release of inflammatory mediators 
and endogenous opioids.

Partial nerve injury is one of the main root causes of causalgiform pain disorders in human. Partial ligation 
of the sciatic nerve is a model of this pain state resulting in mechanical hyperalgesia together with mechanical 
and cold allodynia38,39. Although the altered pain sensation is a characteristic feature of both inflammatory and 
neuropathic pain states, very distinct anatomical and molecular mechanisms, as well as signalling pathways could 
be activated12. Therefore, DPP4 inhibitors were also tested in this model. Both IPI and vildagliptin produced a 
significant decrease in mechanical hyperalgesia, but this effect was not opioid-dependent. Comparing the extent 
of the antihyperalgesic effect of DPP4 inhibitors in inflammation and neuropathy may suggest that DPP4 inhibi-
tors are more effective in inflammatory conditions then in neuropatic states. However, it must be emphasized that 
neuropathic pain and hyperalgesia are very difficult to treat and efficacy of DPP4 inhibitors is comparable to the 
adjuvant analgesic reference drugs used in the clinical practice in doses not causing sedative side-effect and motor 
incoordination40. Therefore, this moderate, but significant antihyperalgesic action should indeed be considered 
remarkable.

In addition to the mechanical hyperalgesia, mechanical and cold allodynia also appeared in this neuropa-
thy. None of the DPP4 inhibitors affected either types of allodynia. Several models of different types of allody-
nia and hyperalgesia have been proposed with the common feature that the two phenomena based on different 
mechanisms12,41–44. The major issue is whether the specially designed behaviour tests for mechanical allodynia 
or mechanical hyperalgesia reflects these phenomena or not. In this study, the threshold-decrease determined 
with the Randall-Selitto test that applies a basically painful pressure stimulus on the rat hind paw is expected to 
show mechanical hyperalgesia. The touch stimulus applied by the DPA that utilizes a blunt-end metal needle is 
considered to be non-painful under intact, normal conditions, therefore its threshold-decrease is expected to 
reflect mechanical allodynia. Since the spinal application of the two inhibitors, resulted in significant changes 
in the Randall-Selitto test but not in DPA, our data indicate that the two tests measure two different processes. 
Therefore, we can conclude that DPP4 inhibitors selectively affect hyperalgesia, but not allodynia. Our results 
indicate the contribution of the DPP4 to the development and maintenance of mechanical hyperalgesia in this 
model of neuropathy, but the underlying mechanisms are unknown. The increased expression of the enzyme was 
most obvious in microglia suggesting the role of this cell type in this process. The contribution of microglia to 
the development of allodynia in neuropathic condition is intensively studied45–47, but its role in the induction and 
maintanance of hyperalgesia and its relationship to the DPP4 requires further studies.

In this study, we demonstrated that DPP4 is expressed in the spinal cord and, similarly to that in higher 
brain area, its expression significantly changes during pathological conditions. Inhibitors of the enzyme do not 
affect acute nociceptive processing and allodynia but can selectively block glial mechanisms that contribute to the 
development and maintenance of hyperalgesia both in inflammatory and neuropathic conditions. This raises the 
possibility that DPP4 inhibitors targeting the central nervous system could be an important antihyperalgesic and 
anti-inflammatory component of new analgesics for the treatment of severe and persistent pain without serious 
side effects.

Methods
Animals. Nociceptive threshold measurements were carried out on male Wistar rats weighing 170–230 g 
and received from the breeding colony of the Semmelweis University that were used for carrageenan induced 
hyperalgesia model, or on animals weighing 100–160 g at the start of the partial sciatic nerve ligation experi-
ments (Seltzer model) and obtained from Charles River Laboratories via Innovo Ltd. (Gödöllő, Hungary) or 
Toxi-Coop Ltd. (Budapest, Hungary). These later groups were bred and kept at the Laboratory Animal Centre of 
the University of Pécs. Rats were housed under similar conditions both at Semmelweis University and University 
of Pécs including temperature-controlled rooms with 12 h light/12 h dark cycles and standard rodent chow and 
tap water supplied ad libitum.

Experiments were performed in accordance with the European Communities Council Directive 86/609/ECC 
and were approved by the Committees on Animal Experiments of the Semmelweis University, Budapest (XIV-I-
001/2265–4/2012) and the Medical School of the University of Pécs (BA02/2000–9/2011) Hungary.

Drugs. Diprotin A (isoleucin-prolin-isoleucin, IPI; Sigma-Aldrich, I9759) stock solution was made up in 25% 
(w/v) hydroxypropyl-beta-cyclodextrin (HPβCD, Sigma-Aldrich, H107) and dilutions were made with sterile 
saline and administered intrathecally (i.t.) in 30 nmol/rat dose. vildagliptin (VIL) was received from Prof. Ingrid 
De Meester of the Laboratory of Medical Biochemistry, University of Antwerp, Wilrijk, Belgium and was admin-
istered i.t. in 3 nmol/rat dose. Naltrexone hydrochloride (NTX) was a generous gift from DuPont Pharmaceuticals 
(Geneva, Switzerland), and was injected subcutaneously (s.c.) in 0.5 mg/g b.w. dissolved in saline.

The MOR antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; Sigma-Aldrich, C6352; 200 
pmol/rat), delta-opioid receptor (DOR) -antagonist H-Tyr-Tic(CH2NH)-Phe-Phe-OH (TIPP[Ψ]; Sigma-Aldrich, 
T7075; 1 nmol/rat) and kappa-opioid receptor (KOR) -antagonist 5′-guanidinonaltrindole (gNTI; Sigma-Aldrich, 
G3416; 10 nmol/rat) were dissolved in distilled water.

I.t. injections were delivered in 5 μl volume by a 250 μl Hamilton syringe set into a Hamilton dispenser. The 
23-Ga needle was introduced at the L5–6 intervertertebral space13,21.

Behavioural experiments. Nocifensive behaviours were determined by different methods to explore the 
inflammatory or neuropathic pain characteristics mediated by distinct anatomical and molecular mechanisms, as 
well as signalling pathways. The threshold decrease determined with the Randall-Selitto test applying a basically 
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painful pressure stimulus on the rat hind paw shows mechanical hyperalgesia. The touch stimulus applied by the 
dynamic plantar aesthesiometry (DPA) using a blunt-end metal needle is considered to be non-painful under 
intact, normal conditions, therefore, its threshold decrease reflects mechanical allodynia. The changes in with-
drawal latency from ice-cold water reflects cold allodynia12.

Carrageenan-induced subacute inflammation. Inflammation was induced by intraplantar injection of 100 μl l% 
λ-carrageenan dissolved in saline (Sigma-Aldrich, 22049) into the right hindpaw. Nociceptive threshold to pres-
sure was determined by the Randall-Selitto method13,21,48 using a type 37215 Analgesimeter (Ugo Basile, Comerio, 
Italy). Rats were lightly restrained and an evenly increasing force was applied onto their paws inserted between 
the cone-shaped clamps of the apparatus. At the moment of paw withdrawal, the actual force was recorded as 
the nociceptive threshold. The baseline nociceptive threshold was initially determined on both hindpaws (at −5 
min), then carrageenan was injected into the right hindpaw (at 0 min). The nociceptive threshold was measured 
again at 180 min and i.t. injection of vehicle, DPP4 inhibitors alone (IPI or VIL) or in combination with subtype 
specific opioid receptor antagonists (CTAP, TIPP[Ψ] or gNTI), was performed. Cardinal signs of the inflamma-
tion such as redness, swelling and heat of the paw had been obvious before the second measurement started. 
Nociceptive threshold readings were repeated at 185, 195, 210 and 240 minutes. Five rats were involved in each 
vehicle experiment, while 7–10 animals were used for drug and drug combinations.

Time-matching data sets on different ipsilateral curves were compared with two-way repeated measures 
ANOVA followed by Bonferroni post hoc test. Percentage maximum possible antihyperalgesic effects were 
calculated according to the following equation: MPE (%) = 100 × (ipsilateral threshold 30 min after i.t. drug 
application − hyperalgesic baseline)/(contralateral threshold at the same time − hyperalgesic baseline), where 
hyperalgesic baseline was defined as the nociceptive threshold of the inflamed hindpaw 180 min after intraplan-
tar carrageenan injection, then comparisons were made with one-way ANOVA followed by Dunnett’s post hoc 
test13,21.

Partial sciatic nerve ligation-induced chronic neuropathic pain model (traumatic mononeuropathy). Partial 
ligation of sciatic nerve results in mechanical hyperalgesia together with mechanical and cold allodynia38,39. 
Accordingly, baseline nociceptive thresholds were determined on two consecutive days using: dynamic plan-
tar aestesiometry (DPA, mechanical allodynia), noxious cold stimulation (cold allodynia) and Randall-Selitto 
test (mechanical hyperalgesia). Under deep pentobarbital anesthesia (50 mg/kg i.p. Euthasol, Produlab Pharma, 
Raamsdonksveer, Netherlands), the sciatic nerves of rats (n = 100) were tightly ligated high in the thigh unilater-
ally using a braided silk suture (Mersilk 6-0, Ethicone) so that approximately 1/3–1/2 of the diameter of the nerve 
was trapped in the ligature. The wound was closed afterwards with 4-0 silk sutures and the animals were allowed 
to recover for one week.

On the 7th postoperative day, nociceptive threshold measurements were repeated for each animal at short 
intervals and percentage hyperalgesia/allodynia values were calculated for the nerve-injured paws with the fol-
lowing formula: hyperalgesia/allodynia (%) = 100 × (preoperative − postoperative values)/(preoperative val-
ues). Only animals that developed a minimum of 20% decrease of threshold with each method were included 
in treatment groups (n = 71). Rats were arranged into groups having similar degree of hyperalgesia/allodynia 
and received (1) i.t. vehicle or (2) DPP4 inhibitor or (3) DPP4 inhibitor 15 min after s.c. NTX pretreatment. For 
i.t. vehicle and DPP4 inhibitor experiments, 8–10 animals were used in each group, while groups undergoing i.t. 
DPP4 inhibitor application following s.c. NTX pretreatment consisted of 5–8 rats. Nociceptive measurements 
from each animal were carried out 20–30 min after i.t. injection starting with DPA at 20 min, followed by the 
Randall-Selitto test at 25 min and finishing with noxious cold stimulation at 30 min. During dynamic plantar 
aesthesiometry, rats were placed into an observation chamber positioned on a metal mesh surface. The touch 
stimulator unit was placed under the animal’s paw and increasing upward force (10 g/s) was exerted until the rat 
removed its paw. Withdrawal thresholds were measured 3 times in turns for each hindpaw and the mean values 
were used for statistical analysis. If no withdrawal occurred, the preset maximum (50 g) was used in the evalu-
ation. Randall-Selitto test was performed as detailed above. To measure noxious cold sensitivity, hindpaws of 
lightly restrained rats were immersed into a 0 °C water bath and the latency to paw withdrawal was recorded. The 
cut-off time was set to 180 seconds.

Withdrawal thresholds recorded before nerve ligation, then on the 7th postoperative day before and after 
drug applications were compared with two-way repeated measures ANOVA followed by Bonferroni post hoc 
test. Percent maximum possible effects were calculated according to the following formula: MPE (%) = 100 × 
(withdrawal threshold after drug application − withdrawal threshold before nerve ligation)/(withdrawal thresh-
old before drug application − withdrawal threshold before nerve ligation), then comparisons were made with 
one-way ANOVA followed by Dunnett’s post hoc test.

RNA isolation and real-time PCR analyses. Carrageenan was injected into both hindpaws of 6 rats and 
partial ligation of both sciatic nerves was performed in 9 animals. Survival time was 3 hours and 7 days, respec-
tively. Development of inflammatory or neuropathic hyperalgesia was confirmed by the Randall-Selitto test, and 
then rats were sacrificed by decapitation, with a further 6 animals used as controls. L4–L6 spinal segments were 
removed and frozen on dry ice. RNA was isolated using the RNeasy Lipid Tissue Mini Kit (QIAGEN) from spinal 
cord samples according to the manufacturer’s instructions. The purity and concentration of the RNA were ana-
lyzed using a SmartSpec Plus spectrophotometer (Bio-Rad, UK). Reverse transcription was performed with 1 μg 
of RNA to convert the total RNA to cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems by Life Technologies). Concentration of the generated cDNA was determined using the Qubit 2.0 
Fluorometer with the Qubit ssDNA Assay Kit (Life Technologies). Expression of DPP4 mRNA was measured by 
real-time quantitative TaqMan RT-PCR reaction with a ViiA 7 Real-Time PCR System (Life Technologies), using 
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commercially available TaqMan probe (Rn00562910_n1) on 10-ng cDNA template in duplicates. Glyceraldehyde-
3-phosphate dehydrogenase (Rn99999916_s1) was used as a housekeeping gene, and its expression did not vary 
between the experimental groups.

For statistical analyses, qPCR data were expressed as relative quantification values (RQ; mean ± SEM) and 
compared between groups by one-way ANOVA.

In situ hybridisation. The 1632–2051 bp long fragment of the rat DPP4 cDNA (gene bank accession 
#NM_012789) was purchased from Blue Heron Biotechnology Inc. (Bothell, WA, USA), subcloned into pBC 
KS + (Addgene, Cambridge, MA, USA) vector, and verified by sequencing. In situ hybridisation (ISH) was per-
formed as described earlier49. Riboprobes in sense and antisense directions were prepared by in vitro transcrip-
tion (MAXIscriptKit, Life Technologies, Carlsbad, CA, USA) and labelled using [35S]UTP-(Per-Form Hungaria 
Kft, Budapest, Hungary). Carrageenan was injected into both hindpaws of 3 rats and partial ligation of both 
sciatic nerves was performed in 3 animals. Survival time was 3 hours and 7 days, respectively. Development of 
inflammatory or neuropathic hyperalgesia was confirmed by the Randall-Selitto test, and then rats were sacri-
ficed by decapitation, with a further 3 animals used as controls. The spinal dorsal horn of L4-L6 segments were 
removed and frozen on dry ice. Serial coronal sections were cut in a cryostat and mounted onto positively charged 
Superfrost Plus slides (Life Technologies). Slides were hybridized overnight in humid chambers at 55 °C with 
106 cpm/slide of the radioactively labelled probes, washed and dehydrated. Slides were dipped into NTB nuclear 
track emulsion (Carestream Health Deutschland GmbH, Stuttgart, Germany) for 4 weeks. Emulsion-coated 
slides were developed using Kodak Dektol developer and Fixer (Sigma-Aldrich Kft, Budapest, Hungary). Sections 
were counter-stained with 0.5% Giemsa solution (Sigma), air dried and coverslipped using Depex mounting 
medium. Dark-field images of three samples per animal were captured by a BX51 Olympus microscope (Olympus 
Corporation, Hamburg, Germany) attached to a QICAM (Qimaging, Surrey, BC, Canada) camera. The grain 
density indicating the level of the DPP4 mRNA expression was calculated as the area percent occupied by the 
silver grains within a given region of interest (ROI; 100 × 100 pixel2) using the Image J 1.32j program. In each 
section, 3 ROIs from the background (area outside of the tissue) and 5 ROIs from the dorsal horn were measured 
and averaged. Then the background was subtracted from the value that was obtained from the tissue. The sense 
and antisense signals were compared using Student’s t-tests with SigmaStat 3.5program (Systat Software, Inc. San 
Jose, CA, USA). One way ANOVA was used for comparing the antisense in situ hybridization signals among the 
groups.

Western blotting. Five rats with unilateral carrageenan-induced hindpaw inflammation, 9 rats undergoing 
unilateral partial nerve ligation one week earlier with further 4 naïve rats were tested with the Randall-Selitto 
method as it was described above. After confirming the obvious decrease of nociceptive thresholds, animals were 
sacrificed by decapitation, and the spinal dorsal horn of L4–L6 segments were removed and snap-frozen on dry 
ice. Samples were homogenized in TNE buffer containing 0.5% Triton X-100 (Sigma), 5 mM NaF, 100 μM Na3VO4 
and a cocktail of protease inhibitors (CompleteTM, Roche) and briefly sonicated. Cell debris and nuclei were pel-
leted by centrifugation (800 g, 30 min at 4 °C). Protein concentrations were determined by Bradford’s colorimetric 
method50. Samples were diluted to a final protein concentration of 2 μg/μl, denatured in 5x Laemmli buffer, and 
analysed by SDS-PAGE on a 10% resolving gel. After transferring onto Immobilon-FL polyvinylidene difluoride 
membranes (Millipore), membrane-bound protein samples were blocked in 3% BSA and 0.5% Tween-20 diluted 
in TBS for 1.5 h, and subsequently exposed to the goat DPP4 primary antibody (Table 1.) overnight at 4 °C. Signal 
detection was achieved by using a HRP-conjugated donkey anti-goat secondary antibody (Jackson; 1:10,000). 
Densitometric data were normalized to β-actin and for quantification three blots per treatment were used. Image 
acquisition and analysis were performed on a Bio-Rad XRS + imaging platform.

Immunofluorescent labelling. Antibodies. Polyclonal goat DPP4 antibody was raised against the syn-
thetic peptide C-PPHFDKSKKYP representing the internal region of DPP4 according to NP_001926.2 and 
labelled one band at approx. 110 kDa in rat lung lysate in Western blot experiments (for details see the supplier’s 
datasheet). In our Western blot experiments rat lung and pancreas lysates were used as positive controls (Fig. 1c). 
Monoclonal mouse DPP4 antibody was produced against the full length rat CD26 protein. To test the specificity 
of the two DPP4 antibodies double immunofluorescent staining was carried out51. Both antibodies labelled the 
same profiles in neurons, astrocytes and microglia (Fig. 2).

Mouse anti-neuron-specific nuclear protein (NeuN) was used for labelling neuronal somata52 together with 
NeuroTrace 435/455 blue-fluorescent Nissl stain53 (Thermo Fischer Scientific - Invitrogen, Cat#: N-21479; 1:200). 
Dendrites were identified with monoclonal mouse antibody produced in mice against microtubule-associated 
protein 2 (MAP2)54,55. Antibody stained one single lane at 280 kDa in Western blot experiment using rat brain 
extract. Ionized calcium-binding adaptor molecule-1 (IBA1) was used as specific microglia/macrophage marker 
and anti-IBA1 antibody was isolated from the serum of rabbits immunized with a synthetic peptide correspond-
ing to C-terminus of IBA1. According to the provider antibody stains one single lane in Western blot experiments 
at around 17 kDa. Monoclonal mouse antibody against glial fibrillary acidic protein (GFAP) was used for specific 
labelling of astrocytes. Guinea pig antibody against vesicular glutamate transporter 2 (VGLUT2) was used to 
identify excitatory axon terminals. The antibody is raised against a 18 amino acid long sequence of the rat protein 
and Western blot analysis on rat brain lysate showed 52 kDa lane as it is seen on the provider’s datasheet related 
to Lot#: NG1866937. This VGLUT2 antibody is heavily used and well characterized56. Inhibitory boutons were 
labelled with polyclonal antibodies against vesicular GABA transporter (VGAT) raised in rabbits immunized by 
the synthetic peptide AEPPVEGDIHYQR (amino acids 75–87 in rat VGAT) coupled to key-hole limpet hemo-
cyanin via an added N- terminal cysteine. Based on the supplier’s data sheet this antibody is knock-out veri-
fied. Synaptophysin (SYN) was used as a synaptic marker and monoclonal mouse antibody was raised against 
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synthetic peptide corresponding to a region near to the C-terminal end of the full peptide. SYN antibody valida-
tion by immunohistochemistry and Western blot is found in the Human Protein Atlas (http://www.proteinatlas.
org). Calcitonin gene-related peptide (CGRP) antibody raised in guinea pig and used for labelling peptidergic 
unmyelinated primary afferents recognizes identical structures to those detected by well characterized rabbit and 
goat antibodies against rat α-CGRP57. For detailed specifications of antibodies see Table 2.

Secondary antibodies were all raised in donkey: Alexa Fluor (AF) -488 labelled anti-goat, AF-555 conju-
gated anti-mouse, AF-555 labelled anti-rabbit (all from Thermo Fischer Scientific-Invitrogen-Molecular Probes; 
1:500) and Rhodamine Red X-anti guinea pig, Cyanine 5-anti mouse, Cyanine 5-anti rabbit (all from Jackson 
ImmunoResearch; 1:100).

General immunofluorescent staining protocol. Transcardial perfusion of deeply anesthetized (75 mg ketamine 
and 7.5 mg xylazine; i.m.) rats (5 naive, 5 unilateral carrageenan treated, and 5 unilateral nerve ligated as described 
above) was initiated with 4% (para)formaldehyde and completed with 4% (para)formaldehyde containing 10% 
sucrose. L4-L5 spinal segments were removed and immersed overnight into 20% sucrose dissolved in PBS. 
Segments were frozen with liquid nitrogen and then 50 µm thick sections were cut on a Vibratome. Endogenous 
peroxidase activity was blocked for 30 minutes with 1% hydrogen peroxide diluted in phosphate buffer (PB), 
then sections were transferred into phosphate buffered saline (PBS) with 5% normal horse serum (NHS). After 
the blocking procedure they were incubated overnight in the DPP4 antibodies then reacted with Alexa Fluor 
488 labelled species specific secondary antibodies. Sections were incubated for 72 hours in mixtures of the other 
primary antibodies and were reacted overnight with fluorescently labelled species specific secondary antibodies. 
All the primary and secondary antibodies were dissolved in PBS. In some sets of experiments, sections were 
immersed into Neurotrace fluorescent Nissl dye (Invitrogen-Molecular Probes; 1:200 in 0.1 M phosphate buffer) 
for half an hour before mounting. After rinsing, sections were mounted in Vectashield (Vector Laboratories) and 
scanned on a confocal laser scanning system (Zeiss, LSM780).

Densitometry of DPP4 immunostaining. L4 and L5 spinal cord segments taken from 5 control, 5 
carrageenan-treated and 5 nerve-ligated rats were used for quantitative analysis. Three to six spinal cord sections 
were taken from each segment on the basis of the gray matter shape and 5 to 8 confocal optical sections were 
scanned from each section. DPP4 staining was not viewed prior to selecting any sections, ROIs or cell profiles. 
The quantitative analysis was carried out by an independent observer, who was blind to the experimental condi-
tions and was not involved in the scanning either.

To determine DPP4 immunoreactivity and its alteration under different circumstances fields containing the 
whole dorsal horn were scanned through a 20x lens of the confocal microscope to produce z-stacks with z sepa-
ration of 1 µm. The scanning parameters were selected and optimized in sections from control animals and were 
used further in sections of treated rats. Single optical sections containing black and white images were selected 
from each z-series and analysed using the Image J program (Rasband WS, Image J, NIH, Bethesda, Maryland). 
The medial two third of the dorsal horn containing the first four laminae (the area receiving inputs from the 
sciatic nerve) was drawn in each section and used as region of interest (ROI). The threshold was adjusted and the 
density of the immunostaining was calculated as the area percentage occupied by the immunostained dots within 
a given ROI. Data were compared among groups by one-way ANOVA.

To analyse the density of the DPP4 immunoreactivity in individual cell types, non-overlapping fields of 
135 µm × 135 µm within the medial two third of the spinal dorsal horn were scanned through a 63x oil immersion 
lens to generate z-stacks with a z-separation of 0.5 µm. The same optimized parameters were used for all types of 
sections. IBA1-, GFAP- and DPP4-immunolabellings (for glial cells) or DPP4 immunolabelling with fluorescent 
Nissl staining (neuronal cell bodies) were imaged in different colour channels sequentially. Outlines of microglia 
and astrocytes were determined automatically by using the AutoThreshold plugin of ImageJ in IBA1 and GFAP 
image channels, respectively. To exclude non-specific labelling of glial cells and nuclei by the fluorescent Nissl dye, 
contours of randomly selected neurons (8 neuron/field) were drawn manually. Then integrated density values 
from DPP4 image channel were measured in previously delineated glial or neuronal profiles to detect changes in 
protein expression due to different treatments. The density values were subjected to statistical analysis.

Antibody Species Dilution Source Catalog No.

CGRP guinea pig 1:5000 Bachem-Peninsula Laboratories T-5027

DPP4 goat 1:500 Fischer Scientific-Novus Biological NB100-61658

DPP4 mouse 1:500 Abcam ab119346

GFAP mouse 1:100 Leica Biosystems-Novocastra NCL-GFAP-GA5

IBA1 rabbit 1:500 Wako Pure Chemical Industries Ltd 019–19741

MAP2 mouse 1:500 Sigma-Aldrich M9942

NeuN mouse 1:1000 Merck-Millipore-Chemicon MAB377

VGAT rabbit 1:1000 Synaptic Systems 131 002

VGLUT2 guinea pig 1:5000 Merck-Millipore-Chemicon AB2251

Synaptophysin mouse 1:1000 Leica Biosystems-Novocastra NCL-SYNAP-299

Table 2. Specifications of primary antibodies used for immunohistochemistry.

http://www.proteinatlas.org
http://www.proteinatlas.org
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Statistical analysis. Statistical methods used are detailed at each experiment individually. Analyses were 
made with SigmaStat 3.5program (Systat Software, Inc. San Jose, CA, USA) and curves/bar graphs were created 
with the GraphPad Prism 5.0 software (GraphPad Software Inc., La Jolla, CA, USA). In general, data were repre-
sented as mean ± SEM when the population was normally distributed or as median with 25% and 75%, otherwise. 
In both cases, p < 0.05 was considered as statistically significant.

Data Availability. The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.
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