251 research outputs found

    Effects of dopaminergic modulation on electrophysiological brain response to affective stimuli

    Get PDF
    Introduction: Several theoretical accounts of the role of dopamine suggest that dopamine has an influence on the processing of affective stimuli. There is some indirect evidence for this from studies showing an association between the treatment with dopaminergic agents and self-reported affect. Materials and methods: We addressed this issue directly by examining the electrophysiological correlates of affective picture processing during a single-dose treatment with a dopamine D2 agonist (bromocriptine), a dopamine D2 antagonist (haloperidol), and a placebo. We compared early and late event-related brain potentials (ERPs) that have been associated with affective processing in the three medication treatment conditions in a randomized double-blind crossover design amongst healthy males. In each treatment condition, subjects attentively watched neutral, pleasant, and unpleasant pictures while ERPs were recorded. Results: Results indicate that neither bromocriptine nor haloperidol has a selective effect on electrophysiological indices of affective processing. In concordance with this, no effects of dopaminergic modulation on self-reported positive or negative affect was observed. In contrast, bromocriptine decreased overall processing of all stimulus categories regardless of their affective content. Discussion: The results indicate that dopaminergic D2 receptors do not seem to play a crucial role in the selective processing of affective visual stimuli

    The Impact of Acute Psychosocial Stress on Magnetoencephalographic Correlates of Emotional Attention and Exogenous Visual Attention

    Get PDF
    Stress-induced acute activation of the cerebral catecholaminergic systems has often been found in rodents. However, little is known regarding the consequences of this activation on higher cognitive functions in humans. Theoretical inferences would suggest increased distractibility in the sense of increased exogenous attention and emotional attention. The present study investigated the influence of acute stress responses on magnetoencephalographic (MEG) correlates of visual attention. Healthy male subjects were presented emotional and neutral pictures in three subsequent MEG recording sessions after being exposed to a TSST-like social stressor, intended to trigger a HPA-response. The subjects anticipation of another follow-up stressor was designed to sustain the short-lived central catecholaminergic stress reactions throughout the ongoing MEG recordings. The heart rate indicates a stable level of anticipatory stress during this time span, subsequent cortisol concentrations and self-report measures of stress were increased. With regard to the MEG correlates of attentional functions, we found that the N1m amplitude remained constantly elevated during stressor anticipation. The magnetic early posterior negativity (EPNm) was present but, surprisingly, was not at all modulated during stressor anticipation. This suggests that a general increase of the influence of exogenous attention but no specific effect regarding emotional attention in this time interval. Regarding the time course of the effects, an influence of the HPA on these MEG correlates of attention seems less likely. An influence of cerebral catecholaminergic systems is plausible, but not definite

    Macular and serum carotenoid concentrations in patients with malabsorption syndromes

    Get PDF
    The carotenoids lutein and zeaxanthin are believed to protect the human macula by absorbing blue light and quenching free radicals. Intestinal malabsorption syndromes such as celiac and Crohn’s disease are known to cause deficiencies of lipid-soluble nutrients. We hypothesized that subjects with nutrient malabsorption syndromes will demonstrate lower carotenoid levels in the macula and blood, and that these lower levels may correlate with early-onset maculopathy. Resonance Raman spectrographic (RRS) measurements of macular carotenoid levels were collected from subjects with and without a history of malabsorption syndromes. Carotenoids were extracted from serum and analyzed by high performance liquid chromatography (HPLC). Subjects with malabsorption (n = 22) had 37% lower levels of macular carotenoids on average versus controls (n = 25, P < 0.001). Malabsorption was not associated with decreased serum carotenoid levels. Convincing signs of early maculopathy were not observed. We conclude that intestinal malabsorption results in lower macular carotenoid levels

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    The Importance of Tree Size and Fecundity for Wind Dispersal of Big-Leaf Mahogany

    Get PDF
    Seed dispersal by wind is a critical yet poorly understood process in tropical forest trees. How tree size and fecundity affect this process at the population level remains largely unknown because of insufficient replication across adults. We measured seed dispersal by the endangered neotropical timber species big-leaf mahogany (Swietenia macrophylla King, Meliaceae) in the Brazilian Amazon at 25 relatively isolated trees using multiple 1-m wide belt transects extended 100 m downwind. Tree diameter and fecundity correlated positively with increased seed shadow extent; but in combination large, high fecundity trees contributed disproportionately to longer-distance dispersal events (>60 m). Among three empirical models fitted to seed density vs. distance in one dimension, the Student-t (2Dt) generally fit best (compared to the negative exponential and inverse power). When seedfall downwind was modelled in two dimensions using a normalised sample, it peaked furthest downwind (c. 25 m) for large, high-fecundity trees; with the inverse Gaussian and Weibull functions providing comparable fits that were slightly better than the lognormal. Although most seeds fell within 30 m of parent trees, relatively few juveniles were found within this distance, resulting in juvenile-to-seed ratios peaking at c. 35–45 m. Using the 2Dt model fits to predict seed densities downwind, coupled with known fecundity data for 2000–2009, we evaluated potential Swietenia regeneration near adults (≤30 m dispersal) and beyond 30 m. Mean seed arrival into canopy gaps >30 m downwind was more than 3× greater for large, high fecundity trees than small, high-fecundity trees. Tree seed production did not necessarily scale up proportionately with diameter, and was not consistent across years, and this resulting intraspecific variation can have important consequences for local patterns of dispersal in forests. Our results have important implications for management and conservation of big-leaf mahogany populations, and may apply to other threatened wind-dispersed Meliaceae trees

    Dissociable Modulation of Overt Visual Attention in Valence and Arousal Revealed by Topology of Scan Path

    Get PDF
    Emotional stimuli have evolutionary significance for the survival of organisms; therefore, they are attention-grabbing and are processed preferentially. The neural underpinnings of two principle emotional dimensions in affective space, valence (degree of pleasantness) and arousal (intensity of evoked emotion), have been shown to be dissociable in the olfactory, gustatory and memory systems. However, the separable roles of valence and arousal in scene perception are poorly understood. In this study, we asked how these two emotional dimensions modulate overt visual attention. Twenty-two healthy volunteers freely viewed images from the International Affective Picture System (IAPS) that were graded for affective levels of valence and arousal (high, medium, and low). Subjects' heads were immobilized and eye movements were recorded by camera to track overt shifts of visual attention. Algebraic graph-based approaches were introduced to model scan paths as weighted undirected path graphs, generating global topology metrics that characterize the algebraic connectivity of scan paths. Our data suggest that human subjects show different scanning patterns to stimuli with different affective ratings. Valence salient stimuli (with neutral arousal) elicited faster and larger shifts of attention, while arousal salient stimuli (with neutral valence) elicited local scanning, dense attention allocation and deep processing. Furthermore, our model revealed that the modulatory effect of valence was linearly related to the valence level, whereas the relation between the modulatory effect and the level of arousal was nonlinear. Hence, visual attention seems to be modulated by mechanisms that are separate for valence and arousal

    Predicting Spatial Patterns of Plant Recruitment Using Animal-Displacement Kernels

    Get PDF
    For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment

    Plant ecology meets animal cognition: impacts of animal memory on seed dispersal

    Get PDF
    We propose that an understanding of animal learning and memory is critical to predicting the impacts of animals on plant populations through processes such as seed dispersal, pollination and herbivory. Focussing on endozoochory, we review the evidence that animal memory plays a role in seed dispersal, and present a model which allows us to explore the fundamental consequences of memory for this process. We demonstrate that decision-making by animals based on their previous experiences has the potential to determine which plants are visited, which fruits are selected to be eaten from the plant and where seeds are subsequently deposited, as well as being an important determinant of animal survival. Collectively, these results suggest that the impact of animal learning and memory on seed dispersal is likely to be extremely important, although to date our understanding of these processes suffers from a conspicuous lack of empirical support. This is partly because of the difficulty of conducting appropriate experiments but is also the result of limited interaction between plant ecologists and those who work on animal cognition

    The Integrative Effects of Cognitive Reappraisal on Negative Affect: Associated Changes in Secretory Immunoglobulin A, Unpleasantness and ERP Activity

    Get PDF
    Although the regulatory role of cognitive reappraisal in negative emotional responses is widely recognized, this reappraisal's effect on acute saliva secretory immunoglobulin A (SIgA), as well as the relationships among affective, immunological, and event-related potential (ERP) changes, remains unclear. In this study, we selected only people with low positive coping scores (PCSs) as measured by the Trait Coping Style Questionnaire to avoid confounding by intrinsic coping styles. First, we found that the acute stress of viewing unpleasant pictures consistently decreased SIgA concentration and secretion rate, increased perceptions of unpleasantness and amplitude of late positive potentials (LPPs) between 200–300 ms and 400–1000 ms. After participants used cognitive reappraisal, their SIgA concentration and secretion rate significantly increased and their unpleasantness and LPP amplitudes significantly decreased compared with a control condition. Second, we found a significantly positive correlation between the increases in SIgA and the decreases in unpleasantness and a significantly negative correlation between the increases in SIgA and the increases in LPP across the two groups. This study is the first to demonstrate that cognitive reappraisal reverses the decrease of SIgA. In addition, it revealed strong correlations among affective, SIgA and electrophysiological changes with convergent multilevel evidence

    Effort-Reward Imbalance at Work and Incident Coronary Heart Disease: A Multicohort Study of 90,164 Individuals.

    Get PDF
    BACKGROUND: Epidemiologic evidence for work stress as a risk factor for coronary heart disease is mostly based on a single measure of stressful work known as job strain, a combination of high demands and low job control. We examined whether a complementary stress measure that assesses an imbalance between efforts spent at work and rewards received predicted coronary heart disease. METHODS: This multicohort study (the "IPD-Work" consortium) was based on harmonized individual-level data from 11 European prospective cohort studies. Stressful work in 90,164 men and women without coronary heart disease at baseline was assessed by validated effort-reward imbalance and job strain questionnaires. We defined incident coronary heart disease as the first nonfatal myocardial infarction or coronary death. Study-specific estimates were pooled by random effects meta-analysis. RESULTS: At baseline, 31.7% of study members reported effort-reward imbalance at work and 15.9% reported job strain. During a mean follow-up of 9.8 years, 1,078 coronary events were recorded. After adjustment for potential confounders, a hazard ratio of 1.16 (95% confidence interval, 1.00-1.35) was observed for effort-reward imbalance compared with no imbalance. The hazard ratio was 1.16 (1.01-1.34) for having either effort-reward imbalance or job strain and 1.41 (1.12-1.76) for having both these stressors compared to having neither effort-reward imbalance nor job strain. CONCLUSIONS: Individuals with effort-reward imbalance at work have an increased risk of coronary heart disease, and this appears to be independent of job strain experienced. These findings support expanding focus beyond just job strain in future research on work stress
    corecore