61 research outputs found

    Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study

    Get PDF
    Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).<p></p> Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.<p></p> Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.<p></p> Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.<p></p&gt

    Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua l.) during temperature stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One important physiological response to environmental stress in animals is change in gene expression. To obtain reliable data from gene expression studies using RT-qPCR it is important to evaluate a set of possible reference genes as normalizers for expression. The expression of these candidate genes should be analyzed in the relevant tissues during normal and stressed situations. To find suitable reference genes it was crucial that the genes were stably expressed also during a situation of physiological stress. For poikilotermic animals like cod, changes in temperature are normal, but if the changes are faster than physiological compensation, the animals respond with typical stress responses. It has previously been shown that Atlantic cod show stress responses when elevation of water temperature is faster than 1 degree/day, for this reason we chose hyperthermia as stress agent for this experiment.</p> <p>Findings</p> <p>We here describe the expression of eight candidate reference genes from Atlantic cod (<it>Gadus morhua l</it>.) and their stability during thermal stress (temperature elevation of one degree C/day for 5 days). The genes investigated were: Eukaryotic elongation factor 1 alpha, <it>ef1a</it>; 18s ribosomal RNA; <it>18s</it>, Ubiquitin conjugate protein; <it>ubiq</it>, cytoskeletal beta-actin; <it>actb</it>, major histcompatibility complex I; MHC-I light chain, beta-2 -microglobulin; <it>b2m</it>, cytoskeletal alpha-tubulin; <it>tba1c</it>, acidic ribosomal phosphoprotein; <it>rplp1</it>, glucose-6-phosphate dehydrogenase; <it>g6pd</it>. Their expression were analyzed in 6 tissues (liver, head kidney, intestine, spleen, heart and gills) from cods exposed to elevated temperature and compared to a control group. Although there were variations between tissues with respect to reference gene stability, four transcripts were more consistent than the others: <it>ubiq</it>, <it>ef1a</it>, <it>18s </it>and <it>rplp1</it>. We therefore used these to analyze the expression of stress related genes (heat shock proteins) induced during hyperthermia. We found that both transcripts were significantly upregulated in several tissues in fish exposed to increased temperature.</p> <p>Conclusion</p> <p>This is the first study comparing reference genes for RT-qPCR analyses of expression during hyperthermia in Atlantic cod. <it>ef1a, 18s, rplp1 </it>and <it>ubiq </it>transcripts were found to be well suited as reference genes during these experimental conditions.</p

    An evaluation of potential reference genes for stability of expression in two salmonid cell lines after infection with either Piscirickettsia salmonis or IPNV

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the limited number of species specific antibodies against fish proteins, differential gene expression analyses are vital for the study of host immune responses. Quantitative real-time reverse transcription PCR (qRT-PCR) is one of the most powerful tools for this purpose. Nevertheless, the accuracy of the method will depend on the careful selection of genes whose expression are stable and can be used as internal controls for a particular experimental setting.</p> <p>Findings</p> <p>The expression stability of five commonly used housekeeping genes [beta-actin (<it>ACTB</it>), elongation factor 1-alpha (<it>EF1A</it>), ubiquitin (<it>UBQ</it>), glyceraldehyd-3-phosphate dehydrogenase (<it>GAPDH</it>) and tubulin alpha (<it>TUBA</it>)] were monitored in salmonid cell lines CHSE-214 and RTS11 after infection with two of the most fastidious fish pathogens, the facultative bacterium <it>Piscirickettsia salmonis </it>and the aquabirnavirus IPNV (Infectious Pancreatic Necrosis Virus). After geNorm analysis, <it>UBQ </it>and <it>EF1A </it>appeared as the most stable, although <it>EF1A </it>was slightly upregulated at late stages of <it>P. salmonis </it>infection in RTS11. <it>ACTB </it>instead, showed a good performance in each case, being always considered within the three most stable genes of the panel. In contrast, infection-dependent differential regulation of <it>GAPDH </it>and <it>TUBA </it>was also demonstrated.</p> <p>Conclusion</p> <p>Based on the data presented here with the cell culture models CHSE-214 and RTS11, we suggest the initial choice of <it>UBQ</it>, <it>ACTB </it>and <it>EF1A </it>as reference genes in qRT-PCR assays for studying the effect of <it>P. salmonis </it>and IPNV on the host immune response.</p

    Probiotic treatment reduces appetite and glucose level in the zebrafish model.

    Get PDF
    The gut microbiota regulates metabolic pathways that modulate the physiological state of hunger or satiety. Nutrients in the gut stimulate the release of several appetite modulators acting at central and peripheral levels to mediate appetite and glucose metabolism. After an eight-day exposure of zebrafish larvae to probiotic Lactobacillus rhamnosus, high-throughput sequence analysis evidenced the ability of the probiotic to modulate the microbial composition of the gastrointestinal tract. These changes were associated with a down-regulation and up-regulation of larval orexigenic and anorexigenic genes, respectively, an up-regulation of genes related to glucose level reduction and concomitantly reduced appetite and body glucose level. BODIPY-FL-pentanoic-acid staining revealed higher short chain fatty acids levels in the intestine of treated larvae. These results underline the capability of the probiotic to modulate the gut microbiota community and provides insight into how the probiotic interacts to regulate a novel gene network involved in glucose metabolism and appetite control, suggesting a possible role for L. rhamnosus in the treatment of impaired glucose tolerance and food intake disorders by gut microbiota manipulation

    Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish

    Get PDF
    Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets - adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described - all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC

    Cathepsin E Deficiency Impairs Autophagic Proteolysis in Macrophages

    Get PDF
    Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE-/-) mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR), Akt, and extracellular signal-related kinase (ERK). Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE-/- macrophages showed increased reactive oxygen species (ROS) production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress
    corecore