67 research outputs found

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula)

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10933-009-9387-7.We present the Holocene sequence from Lago Enol (43°16′N, 4°59′W, 1,070 m a.s.l.), Cantabrian Mountains, northern Spain. A multiproxy analysis provided comprehensive information about regional humidity and temperature changes. The analysis included sedimentological descriptions, physical properties, organic carbon and carbonate content, mineralogy and geochemical composition together with biological proxies including diatom and ostracod assemblages. A detailed pollen study enabled reconstruction of variations in vegetation cover, which were interpreted in the context of climate changes and human impact. Four distinct stages were recognized for the last 13,500 years: (1) a cold and dry episode that includes the Younger Dryas event (13,500–11,600 cal. year BP); (2) a humid and warmer period characterizing the onset of the Holocene (11,600–8,700 cal. year BP); (3) a tendency toward a drier climate during the middle Holocene (8,700–4,650 cal. year BP); and (4) a return to humid conditions following landscape modification by human activity (pastoral activities, deforestation) in the late Holocene (4,650–2,200 cal. year BP). Superimposed on relatively stable landscape conditions (e.g. maintenance of well established forests), the typical environmental variability of the southern European region is observed at this site.The Spanish Inter-Ministry Commission of Science and Technology (CICYT), the Spanish National Parks agency, the European Commission, the Spanish Ministry of Science, and the European Social Fund

    Imprisonment and internment: Comparing penal facilities North and South

    Get PDF
    Recent references to the ‘warehouse prison’ in the United States and the prisión-depósito in Latin America seem to indicate that penal confinement in the western hemisphere has converged on a similar model. However, this article suggests otherwise. It contrasts penal facilities in North America and Latin America in terms of six interrelated aspects: regimentation; surveillance; isolation; supervision; accountability; and formalization. Quantitatively, control in North American penal facilities is assiduous (unceasing, persistent and intrusive), while in Latin America it is perfunctory (sporadic, indifferent and cursory). Qualitatively, North American penal facilities produce imprisonment (which enacts penal intervention through confinement), while in Latin America they produce internment (which enacts penal intervention through release). Closely entwined with this qualitative difference are distinct practices of judicial involvement in sentencing and penal supervision. Those practices, and the cultural and political factors that underpin them, represent an interesting starting point for the explanation of the contrasting nature of imprisonment and internment

    Survival and long-term maintenance of tertiary trees in the Iberian Peninsula during the Pleistocene. First record of Aesculus L.

    Get PDF
    The Italian and Balkan peninsulas have been places traditionally highlighted as Pleistocene glacial refuges. The Iberian Peninsula, however, has been a focus of controversy between geobotanists and palaeobotanists as a result of its exclusion from this category on different occasions. In the current paper, we synthesise geological, molecular, palaeobotanical and geobotanical data that show the importance of the Iberian Peninsula in the Western Mediterranean as a refugium area. The presence of Aesculus aff. hippocastanum L. at the Iberian site at Cal Guardiola (Tarrasa, Barcelona, NE Spain) in the Lower– Middle Pleistocene transition helps to consolidate the remarkable role of the Iberian Peninsula in the survival of tertiary species during the Pleistocene. The palaeodistribution of the genus in Europe highlights a model of area abandonment for a widely-distributed species in the Miocene and Pliocene, leading to a diminished and fragmentary presence in the Pleistocene and Holocene on the southern Mediterranean peninsulas. Aesculus fossils are not uncommon within the series of Tertiary taxa. Many appear in the Pliocene and suffer a radical impoverishment in the Lower–Middle Pleistocene transition. Nonetheless some of these tertiary taxa persisted throughout the Pleistocene and Holocene up to the present in the Iberian Peninsula. Locating these refuge areas on the Peninsula is not an easy task, although areas characterised by a sustained level of humidity must have played an predominant role

    The ACER pollen and charcoal database: A global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    Get PDF
    This is the final version of the article. Available from Copernicus Publications via the DOI in this record.Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15ka) with a temporal resolution better than 1000years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access™ at https://doi.org/10.1594/PANGAEA.870867.The members of the ACER project wish to thank the QUEST-DESIRE (UK and France) bilateral project, the INQUA International Focus Group ACER and the INTIMATE-COST action for funding a suite of workshops to compile the ACER pollen and charcoal database and the workshop on ACER chronology that allow setting the basis for harmonizing the chronologies. Josué M. Polanco-Martinez was funded by a Basque Government postdoctoral fellowship (POS_2015_1_0006) and Sandy P. Harrison by the ERC Advanced Grant GC2.0: unlocking the past for a clearer future

    Electroluminescence TPCs at the thermal diffusion limit

    Get PDF
    [EN] The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/ sqrt(¿) for pure xenon down to 2.5 mm/sqrt(m) using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-AC02-06CH11357 (Argonne National Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0017721 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Henriques, CAO.; Monteiro, CMB.; Gonzalez-Diaz, D.; Azevedo, CDR.; Freitas, EDC.; Mano, RDP.; Jorge, MR.... (2019). Electroluminescence TPCs at the thermal diffusion limit. Journal of High Energy Physics (Online). 1:1-20. https://doi.org/10.1007/JHEP01(2019)027S1201NEXT collaboration, J. Martín-Albo et al., Sensitivity of NEXT-100 to neutrinoless double beta decay, JHEP 05 (2016) 159 [ arXiv:1511.09246 ] [ INSPIRE ].T. Brunner et al., An RF-only ion-funnel for extraction from high-pressure gases, Intern. J. Mass Spectrom. 379 (2015) 110 [ INSPIRE ].PANDAX-III collaboration, J. Galan, Microbulk MicrOMEGAs for the search of 0νββ of 136 Xe in the PandaX-III experiment, 2016 JINST 11 P04024 [ arXiv:1512.09034 ] [ INSPIRE ].D. Yu. Akimov, A.A. Burenkov, V.F. Kuzichev, V.L. Morgunov and V.N. Solovev, Low background experiments with high pressure gas scintillation proportional detector, physics/9704021 [ INSPIRE ].Yu. M. Gavrilyuk et al., A technique for searching for the 2K capture in 124 Xe with a copper proportional counter, Phys. Atom. Nucl. 78 (2015) 1563 [ INSPIRE ].D.R. Nygren, Columnar recombination: a tool for nuclear recoil directional sensitivity in a xenon-based direct detection WIMP search, J. Phys. Conf. Ser. 460 (2013) 012006 [ INSPIRE ].XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [ arXiv:1705.06655 ] [ INSPIRE ].XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [ arXiv:1207.5988 ] [ INSPIRE ].LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [ arXiv:1608.07648 ] [ INSPIRE ].PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [ arXiv:1708.06917 ] [ INSPIRE ].EXO collaboration, J.B. Albert et al., Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [ arXiv:1707.08707 ] [ INSPIRE ].KamLAND-Zen collaboration, A. Gando et al., Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [ arXiv:1605.02889 ] [ INSPIRE ].XMASS collaboration, K. Abe et al., Search for two-neutrino double electron capture on 124 Xe with the XMASS-I detector, Phys. Lett. B 759 (2016) 64 [ arXiv:1510.00754 ] [ INSPIRE ].XENON collaboration, E. Aprile et al., Search for two-neutrino double electron capture of 124 Xe with XENON100, Phys. Rev. C 95 (2017) 024605 [ arXiv:1609.03354 ] [ INSPIRE ].R. Lüscher et al., Search for ββ decay in 136 Xe: new results from the Gotthard experiment, Phys. Lett. B 434 (1998) 407 [ INSPIRE ].NEXT collaboration, P. Ferrario et al., First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment, JHEP 01 (2016) 104 [ arXiv:1507.05902 ] [ INSPIRE ].NEXT collaboration, D. Lorca et al., Characterisation of NEXT-DEMO using xenon K α X-rays, 2014 JINST 9 P10007 [ arXiv:1407.3966 ] [ INSPIRE ].NEXT collaboration, D. González-Díaz et al., Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm, Nucl. Instrum. Meth. A 804 (2015) 8 [ arXiv:1504.03678 ] [ INSPIRE ].C.M.B. Monteiro et al., Secondary Scintillation Yield in Pure Xenon, 2007 JINST 2 P05001 [ physics/0702142 ] [ INSPIRE ].C.M.B. Monteiro, J.A.M. Lopes, J.F. C.A. Veloso and J.M.F. dos Santos, Secondary scintillation yield in pure argon, Phys. Lett. B 668 (2008) 167 [ INSPIRE ].E.D.C. Freitas et al., Secondary scintillation yield in high-pressure xenon gas for neutrinoless double beta decay (0νββ) search, Phys. Lett. B 684 (2010) 205 [ INSPIRE ].C.M.B. Monteiro et al., Secondary scintillation yield from gaseous micropattern electron multipliers in direct dark matter detection, Phys. Lett. B 677 (2009) 133 [ INSPIRE ].C.M.B. Monteiro, L.M.P. Fernandes, J.F. C.A. Veloso, C.A.B. Oliveira and J.M.F. dos Santos, Secondary scintillation yield from GEM and THGEM gaseous electron multipliers for direct dark matter search, Phys. Lett. B 714 (2012) 18 [ INSPIRE ].C. Balan et al., MicrOMEGAs operation in high pressure xenon: Charge and scintillation readout, 2011 JINST 6 P02006 [ arXiv:1009.2960 ] [ INSPIRE ].J.M.F. dos Santos et al., Development of portable gas proportional scintillation counters for x-ray spectrometry, X-Ray Spectrom. 30 (2001) 373.NEXT collaboration, J. Renner et al., Background rejection in NEXT using deep neural networks, 2017 JINST 12 T01004 [ arXiv:1609.06202 ] [ INSPIRE ].T. Himi et al., Emission spectra from Ar-Xe, Ar-Kr, Ar-N2, Ar-CH4, Ar-CO2 and Xe-N2 gas proportional scintillation counters, Nucl. Instrum. Meth. 205 (1983) 591.C.D.R. Azevedo et al., An homeopathic cure to pure Xenon large diffusion, 2016 JINST 11 C02007 [ arXiv:1511.07189 ] [ INSPIRE ].NEXT collaboration, C.A.O. Henriques et al., Secondary scintillation yield of xenon with sub-percent levels of CO 2 additive for rare-event detection, Phys. Lett. B 773 (2017) 663 [ arXiv:1704.01623 ] [ INSPIRE ].P.C.P.S. Simões, J.M.F. dos Santos and C.A.N. Conde, Driftless gas proportional scintillation counter pulse analysis using digital processing techniques, X Ray Spectrom. 30 (2001) 342.P.C.P.S. Simões et al., A new method for pulse analysis of driftless-gas proportional scintillation counters, Nucl. Instrum. Meth. A 505 (2003) 247.C.D.R. Azevedo et al., Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives, Nucl. Instrum. Meth. A 877 (2018) 157 [ arXiv:1705.09481 ] [ INSPIRE ].L.M.P. Fernandes et al., Primary and secondary scintillation measurements in a xenon Gas Proportional Scintillation Counter, 2010 JINST 5 P09006 [Erratum ibid. 5 (2010) A12001] [ arXiv:1009.2719 ] [ INSPIRE ].C.M.B. Monteiro et al., An argon gas proportional scintillation counter with UV avalanche photodiode scintillation readout, IEEE Trans. Nucl. Sci. 48 (2001) 1081.J.A.M. Lopes et al., A xenon gas proportional scintillation counter with a UV-sensitive large-area avalanche photodiode, IEEE Trans. Nucl. Sci. 48 (2001) 312.D.F. Anderson et al., A large area gas scintillation proportional counter, Nucl. Instrum. Meth. 163 (1979) 125.Z. Kowalski et al., Fano factor implications from gas scintillation proportional counter measurements, Nucl. Instrum. Meth. A 279 (1989) 567.S.J.C. do Carmo et al., Experimental study of the ω-values and Fano factors of gaseous xenon and Ar-Xe mixtures for X-rays, IEEE Trans. Nucl. Sci. 55 (2008) 2637.http://magboltz.web.cern.ch/magboltz/ (accessed 14.11.2016).T.H.V.T. Dias et al., Full-energy absorption of x-ray energies near the Xe L- and K-photoionization thresholds in xenon gas detectors: Simulation and experimental results, J. Appl. Phys. 82 (1997) 2742.D. Nygren, High-pressure xenon gas electroluminescent TPC for 0νββ-decay search, Nucl. Instrum. Meth. A 603 (2009) 337 [ INSPIRE ].NEXT collaboration, V. Álvarez et al., The NEXT-100 experiment for neutrinoless double beta decay searches (Conceptual Design Report), arXiv:1106.3630 [ INSPIRE ].NEXT collaboration, V. Álvarez et al., Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array, 2013 JINST 8 P09011 [ arXiv:1306.0471 ] [ INSPIRE ]
    corecore