220 research outputs found

    Coherent master equation for laser modelocking

    Get PDF
    Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism

    Stokes solitons in optical microcavities

    Get PDF
    Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy

    Random walk with barriers: Diffusion restricted by permeable membranes

    Full text link
    Restrictions to molecular motion by barriers (membranes) are ubiquitous in biological tissues, porous media and composite materials. A major challenge is to characterize the microstructure of a material or an organism nondestructively using a bulk transport measurement. Here we demonstrate how the long-range structural correlations introduced by permeable membranes give rise to distinct features of transport. We consider Brownian motion restricted by randomly placed and oriented permeable membranes and focus on the disorder-averaged diffusion propagator using a scattering approach. The renormalization group solution reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow inverse square root time dependence. The predicted time dependence of the diffusion coefficient agrees well with Monte Carlo simulations in two dimensions. Our results can be used to identify permeable membranes as restrictions to transport in disordered materials and in biological tissues, and to quantify their permeability and surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde

    The association between farming activities, precipitation, and the risk of acute gastrointestinal illness in rural municipalities of Quebec, Canada: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing livestock density and animal manure spreading, along with climate factors such as heavy rainfall, may increase the risk of acute gastrointestinal illness (AGI). In this study we evaluated the association between farming activities, precipitation and AGI.</p> <p>Methods</p> <p>A cross-sectional telephone survey of randomly selected residents (n = 7006) of 54 rural municipalities in Quebec, Canada, was conducted between April 2007 and April 2008. AGI symptoms and several risk factors were investigated using a phone questionnaire. We calculated the monthly prevalence of AGI, and used multivariate logistic regression, adjusting for several demographic and risk factors, to evaluate the associations between AGI and both intensive farming activities and cumulative weekly precipitation. Cumulative precipitation over each week, from the first to sixth week prior to the onset of AGI, was analyzed to account for both the delayed effect of precipitation on AGI, and the incubation period of causal pathogens. Cumulative precipitation was treated as a four-category variable: high (≥90<sup>th </sup>percentile), moderate (50<sup>th </sup>to <90<sup>th </sup>percentile), low (10<sup>th </sup>to <50<sup>th </sup>percentile), and very low (<10<sup>th </sup>percentile) precipitation.</p> <p>Results</p> <p>The overall monthly prevalence of AGI was 5.6% (95% CI 5.0%-6.1%), peaking in winter and spring, and in children 0-4 years old. Living in a territory with intensive farming was negatively associated with AGI: adjusted odds ratio (OR) = 0.70 (95% CI 0.51-0.96). Compared to low precipitation periods, high precipitation periods in the fall (September, October, November) increased the risk of AGI three weeks later (OR = 2.20; 95% CI 1.09-4.44) while very low precipitation periods in the summer (June, July, August) increased the risk of AGI four weeks later (OR = 2.19; 95% CI 1.02-4.71). Further analysis supports the role of water source on the risk of AGI.</p> <p>Conclusions</p> <p>AGI poses a significant burden in Quebec rural municipalities with a peak in winter. Intensive farming activities were found to be negatively associated with AGI. However, high and very low precipitation levels were positively associated with the occurrence of AGI, especially during summer and fall. Thus, preventive public health actions during such climate events may be warranted.</p

    Exercise-induced improvements in liver fat and endothelial function are not sustained 12 months following cessation of exercise supervision in non-alcoholic fatty liver disease (NAFLD).

    Get PDF
    AIMS: Supervised exercise reduces liver fat and improves endothelial function, a surrogate of cardiovascular disease risk, in non-alcoholic fatty liver disease (NAFLD). We hypothesised that after a 16-week supervised exercise program, patients would maintain longer-term improvements in cardiorespiratory fitness, liver fat and endothelial function. MATHERIALS AND METHODS: Ten NAFLD patients [5/5 males/females, age 51±13years, BMI 31±3 kg.m(2) (mean±s.d.)] underwent a 16-week supervised moderate-intensity exercise intervention. Biochemical markers, cardiorespiratory fitness (VO2peak), subcutaneous, visceral and liver fat (measured by magnetic resonance imaging and spectroscopy respectively) and brachial artery flow-mediated dilation (FMD) were assessed at baseline, after 16 weeks supervised training and 12-months after ending supervision. RESULTS: Despite no significant change in body weight, there were significant improvements in VO2peak [6.5 ml.kg(-1).min(-1) (95% CI 2.8, 10.1); P=0.003], FMD [2.9% (1.5, 4.2); P=0.001], liver transaminases (P0.05) and liver fat [1.4% (-13.0, 15.9); P=0.83] were not significantly different from baseline. CONCLUSIONS: Twelve months following cessation of supervision, exercise-mediated improvements in liver fat and other cardiometabolic variables had reversed with cardiorespiratory fitness at baseline levels. Maintenance of high cardiorespiratory fitness and stability of body weight are critical public health considerations for the treatment of NAFLD.International Journal of Obesity accepted article preview online, 21 July 2016. doi:10.1038/ijo.2016.123

    Monocyte Chemotactic Protein-1 (MCP-1) and Growth Factors Called into Question as Markers of Prolonged Psychosocial Stress

    Get PDF
    BACKGROUND:Psychosocial stress is becoming a major contributor to increased mental ill-health and sick leave in many countries. Valid markers of chronic stress would be valuable for diagnostic and prognostic purposes. A recent study suggested monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) as markers of chronic stress. We aimed to confirm these potential biomarkers of prolonged psychosocial stress in female patients. METHODOLOGY/PRINCIPAL FINDINGS:Circulating levels of MCP-1, EGF and VEGF, along with several other cytokines, were measured in plasma from 42 female patients suffering from exhaustion due to prolonged psychosocial stress and 42 control subjects, using a protein biochip immunoassay. There were no significant differences between patients and controls in any of the cytokines or growth factors analyzed. Furthermore, when using a different protein bioassay and reanalyzing MCP-1 and VEGF in the same samples, markedly different levels were obtained. To further explore if inflammation is present in patients with exhaustion, the classical inflammatory marker C-reactive protein (CRP) was measured in another group of patients (n=89) and controls (n=88) showing a small but significant increase of CRP levels in the patients. CONCLUSIONS/SIGNIFICANCE:MCP-1, EGF and VEGF may not be suitable markers of prolonged psychosocial stress as previously suggested. Furthermore, significant differences were obtained when using two different protein assays measuring the same samples, indicating that comparing studies where different analytic techniques have been used might be difficult. Increased levels of CRP indicate that low-grade inflammation might be present in patients with exhaustion due to prolonged stress exposure but this inflammation does not seem to be reflected by increase in circulating MCP-1 or other cytokines measured

    Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes

    Get PDF
    BACKGROUND: Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile

    Plasma sphingosine-1-phosphate is elevated in obesity

    Get PDF
    Background: Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P), the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity. Methodology/Principal Findings: Plasma S1P levels were determined in high-fat diet (HFD)-induced and genetically obese (ob/ob) mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI), waist circumference, fasting insulin, HOMA-IR, HbA1c (%), total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice. Conclusion: We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance
    • …
    corecore