192 research outputs found

    In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer

    Full text link
    [EN] The present study reports on the use of low-functionality epoxy-based styrene¿acrylic oligomer (ESAO) to compatibilize immiscible ternary blends made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polylactide (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The addition during melt processing of low-functionality ESAO at two parts per hundred resin (phr) of biopolymer successfully changed the soften inclusion phase in the blend system to a thinner morphology, yielding biopolymer ternary blends with higher mechanical ductility and also improved oxygen barrier performance. The compatibilization achieved was ascribed to the in situ formation of a newly block terpolymer, i.e. PHBVb- PLA-b-PBAT, which was produced at the blend interface by the reaction of the multiple epoxy groups present in ESAO with the functional terminal groups of the biopolymers. This chemical reaction was mainly linear due to the inherently low functionality of ESAO and the more favorable reactivity of the epoxy groups with the carboxyl groups of the biopolymers, which avoided the formation of highly branched and/or cross-linked structures and thus facilitated the films processability. Therefore, the reactive blending of biopolymers at different mixing ratios with low-functionality ESAO represents a straightforward methodology to prepare sustainable plastics at industrial scale with different physical properties that can be of interest in, for instance, food packaging applications.This research was funded by the EU H2020 project YPACK (Reference number 773872) and by the Spanish Ministry of Science, Innovation, and Universities (MICIU) with project numbers MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R. L. Quiles-Carrillo wants to thank the Spanish Ministry of Education, Culture, and Sports (MECD) for financial support through his FPU Grant Number FPU15/03812. Torres-Giner also acknowledges the MICIU for his Juan de la Cierva contract (IJCI-2016-29675).Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.; Balart, R.; Torres-Giner, S. (2019). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene Acrylic Oligomer. Journal of Polymers and the Environment. 27(1):84-96. https://doi.org/10.1007/s10924-018-1324-2S8496271Babu RP, O’Connor K, Seeram R (2013) Prog Biomater 2:8Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R (2017) J Food Saf 37:e12348Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner S (2017) Polym Test 61:421Zakharova E, Alla A, Martínez A, De Ilarduya S, Muñoz-Guerra (2015) RSC Adv 5:46395Steinbüchel A, Valentin HE (1995) FEMS Microbiol Lett 128:219McChalicher CWJ, Srienc F (2007) J Biotechnol 132:296Reis KC, Pereira J, Smith AC, Carvalho CWP, Wellner N, Yakimets I (2008) J Food Eng 89:361Vink ETH, Davies S (2015) Ind Biotechnol 11:167John RP, Nampoothiri KM, Pandey A (2006) Process Biochem 41:759Madhavan Nampoothiri K, Nair NR, John RP (2010) Biores Technol 101:8493Garlotta D (2001) J Polym Environ 9:63Lim LT, Auras R, Rubino M (2008) Prog Polym Sci 33:820Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Ind Crops Prod 111:878Quiles-Carrillo L, Blanes-Martínez MM, Montanes N, Fenollar O, Torres-Giner S, Balart R (2018) Eur Polym J 98:402Witt U, Müller R-J, Deckwer W-D (1997) J Environ Polym Degrad 5:81Siegenthaler KO, Künkel A, Skupin G, Yamamoto M (2012) Ecoflex® and Ecovio®: biodegradable, performance-enabling plastics. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Synthetic biodegradable polymers. Springer, Berlin Heidelberg, p 91Jiang L, Wolcott MP, Zhang J (2006) Biomacromol 7:199Brandelero RPH, Yamashita F, Grossmann MVE (2010) Carbohyd Polym 82:1102Muthuraj R, Misra M, Mohanty AK (2014) J Polym Environ 22:336Porter RS, Wang L-H (1992) Polymer 33(10): 2019Koning C, Van Duin M, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707Muthuraj R, Misra M, Mohanty AK (2017) J Appl Polym Sci 135:45726Ryan AJ (2002) Nat Mater 1:8Wu D, Zhang Y, Yuan L, Zhang M, Zhou W (2010) J Polym Sci Part B 48:756Kim CH, Cho KY, Choi EJ, Park JK (2000) J Appl Polym Sci 77:226Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Polymer 105:1Na Y-H, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179Zeng J-B, Li K-A, Du A-K (2015) RSC Adv 5:32546Xanthos M, Dagli SS (1991) Polym Eng Sci 31:929Sundararaj U, Macosko CW (1995) Macromolecules 28:2647Milner ST, Xi H (1996) J Rheol 40:663Villalobos M, Awojulu A, Greeley T, Turco G, Deeter G (2006) Energy 31:3227Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Eur Polym J 84:693Lehermeier HJ, Dorgan JR (2001) Polym Eng Sci 41:2172Liu B, Xu Q (2013) J Mater Sci Chem Eng 1:9Eslami H, Kamal MR (2013) J Appl Polym Sci 129:2418Loontjens T, Pauwels K, Derks F, Neilen M, Sham CK, Serné M (1997) J Appl Polym Sci 65:1813Ojijo V, Ray SS (2015) Polymer 80:1Frenz V, Scherzer D, Villalobos M, Awojulu AA, Edison M, Van Der Meer R (2008) Multifunctional polymers as chain extenders and compatibilizers for polycondensates and biopolymers. In: Technical papers, regional technical conference—society of plastics engineers, p. 3/1678Utracki LA (2002) Can J Chem Eng 80:1008Al-Itry R, Lamnawar K, Maazouz A (2012) Polym Degrad Stab 97:1898Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mater Des (1980–2015) 36: 604Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Polym Test 43:27Wang Y, Fu C, Luo Y, Ruan C, Zhang Y, Fu Y (2010) J Wuhan Univ Technol Mater Sci Ed 25:774Wei D, Wang H, Xiao H, Zheng A, Yang Y (2015) Carbohyd Polym 123:275Abdelwahab MA, Taylor S, Misra M, Mohanty AK (2015) Macromol Mater Eng 300:299Sun Q, Mekonnen T, Misra M, Mohanty AK (2016) J Polym Environ 24:23Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2011) J Appl Polym Sci 122:914Miyata T, Masuko T (1998) Polymer 39:5515Muthuraj R, Misra M, Mohanty AK (2015) J Appl Polym Sci 132:42189Ren J, Fu H, Ren T, Yuan W (2009) Carbohyd Polym 77:576Torres-Giner S, Montanes N, Fenollar O, García-Sanoguera D, Balart R (2016) Mater Des 108:648Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Compr Rev Food Sci Food Saf 9:552Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Process Biochem 35:573Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Polym Test 42:115Zhang K, Mohanty AK, Misra M (2012) ACS Appl Mater Interfaces 4:3091Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250Chinsirikul W, Rojsatean J, Hararak B, Kerddonfag N, Aontee A, Jaieau K, Kumsang P, Sripethdee C (2015) Packag Technol Sci 28:741Auras R, Harte B, Selke S (2004) J Appl Polym Sci 92:1790Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Carbohyd Polym 71:235Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheeting 23:133Lagaron JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, Cambridge, p 

    Can We Really Prevent Suicide?

    Get PDF
    Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia

    Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion

    Get PDF
    Myosin VI (MVI) is the only known myosin walking towards minus end of actin filaments and is believed to play distinct role(s) than other myosins. We addressed a role of this unique motor in secretory PC12 cells, derived from rat adrenal medulla pheochromocytoma using cell lines with reduced MVI synthesis (produced by means of siRNA). Decrease of MVI expression caused severe changes in cell size and morphology, and profound defects in actin cytoskeleton organization and Golgi structure. Also, significant inhibition of cell migration as well as cell proliferation was observed. Flow cytometric analysis revealed that MVI-deficient cells were arrested in G0/G1 phase of the cell cycle but did not undergo increased senescence as compared with control cells. Also, neither polyploidy nor aneuploidy were detected. Surprisingly, no significant effect on noradrenaline secretion was observed. These data indicate that in PC12 cells MVI is involved in cell migration and proliferation but is not crucial for stimulation-dependent catecholamine release

    Development and validation of a population-based prediction scale for osteoporotic fracture in the region of Valencia, Spain: the ESOSVAL-R study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Today, while there are effective drugs that reduce the risk of osteoporotic fracture, yet there are no broadly accepted criteria that can be used to estimate risks and decide who should receive treatment. One of the actual priorities of clinical research is to develop a set of simple and readily-available clinical data that can be used in routine clinical practice to identify patients at high risk of bone fracture, and to establish thresholds for therapeutic interventions. Such a tool would have high impact on healthcare policies. The main objective of the ESOSVAL-R is to develop a risk prediction scale of osteoporotic fracture in adult population using data from the Region of Valencia, Spain.</p> <p>Methods/Design</p> <p><it>Study design</it>: An observational, longitudinal, prospective cohort study, undertaken in the Region of Valencia, with an initial follow-up period of five years; <it>Subjects</it>: 14,500 men and women over the age of 50, residing in the Region and receiving healthcare from centers where the ABUCASIS electronic clinical records system is implanted; <it>Sources of data</it>: The ABUCASIS electronic clinical record system, complemented with hospital morbidity registers, hospital Accidents & Emergency records and the Regional Ministry of Health's mortality register; <it>Measurement of results</it>: Incident osteoporotic fracture (in the hip and/or major osteoporotic fracture) during the study's follow-up period. Independent variables include clinical data and complementary examinations; <it>Analysis</it>: 1) Descriptive analysis of the cohorts' baseline data; 2) Upon completion of the follow-up period, analysis of the strength of association between the risk factors and the incidence of osteoporotic fracture using Cox's proportional hazards model; 3) Development and validation of a model to predict risk of osteoporotic fracture; the validated model will serve to develop a simplified scale that can be used during routine clinical visits.</p> <p>Discussion</p> <p>The ESOSVAL-R study will establish a prediction scale for osteoporotic fracture in Spanish adult population. This scale not only will constitute a useful prognostic tool, but also it will allow identifying intervention thresholds to support treatment decision-making in the Valencia setting, based mainly on the information registered in the electronic clinical records.</p

    A pooling-based genome-wide analysis identifies new potential candidate genes for atopy in the European Community Respiratory Health Survey (ECRHS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and atopy are complex phenotypes with shared genetic component. In this study we attempt to identify genes related to these traits performing a two-stage DNA pooling genome-wide analysis in order to reduce costs. First, we assessed all markers in a subset of subjects using DNA pooling, and in a second stage we evaluated the most promising markers at an individual level.</p> <p>Methods</p> <p>For the genome-wide analysis, we constructed DNA pools from 75 subjects with atopy and asthma, 75 subjects with atopy and without asthma and 75 control subjects without atopy or asthma. In a second stage, the most promising regions surrounding significant markers after correction for false discovery rate were replicated with individual genotyping of samples included in the pools and an additional set of 429 atopic subjects and 222 controls from the same study centres.</p> <p>Results</p> <p><it>Homo sapiens </it>protein kinase-like protein SgK493 (<it>SGK493</it>) was found to be associated with atopy. To lesser extent mitogen-activated protein kinase 5 (<it>MAP3K5</it>), collagen type XVIII alpha 1 (<it>COL18A1</it>) and collagen type XXIX alpha 1 (<it>COL29A1</it>) were also found to be associated with atopy. Functional evidences points out a role for <it>MAP3K5</it>, <it>COL18A1 </it>and <it>COL29A1 </it>but the function of <it>SGK493 </it>is unknown.</p> <p>Conclusion</p> <p>In this analysis we have identified new candidate regions related to atopy and suggest <it>SGK493 </it>as an atopy locus, although these results need further replication.</p

    Growth Hormone Promotes Hair Cell Regeneration in the Zebrafish (Danio rerio) Inner Ear following Acoustic Trauma

    Get PDF
    BACKGROUND: Previous microarray analysis showed that growth hormone (GH) was significantly upregulated following acoustic trauma in the zebrafish (Danio rerio) ear suggesting that GH may play an important role in the process of auditory hair cell regeneration. Our objective was to examine the effects of exogenous and endogenous GH on zebrafish inner ear epithelia following acoustic trauma. METHODOLOGY/PRINCIPAL FINDINGS: We induced auditory hair cell damage by exposing zebrafish to acoustic overstimulation. Fish were then injected intraperitoneally with either carp GH or buffer, and placed in a recovery tank for either one or two days. Phalloidin-, bromodeoxyuridine (BrdU)-, and TUNEL-labeling were used to examine hair cell densities, cell proliferation, and apoptosis, respectively. Two days post-trauma, saccular hair cell densities in GH-treated fish were similar to that of baseline controls, whereas buffer-injected fish showed significantly reduced densities of hair cell bundles. Cell proliferation was greater and apoptosis reduced in the saccules, lagenae, and utricles of GH-treated fish one day following trauma compared to controls. Fluorescent in situ hybridization (FISH) was used to examine the localization of GH mRNA in the zebrafish ear. At one day post-trauma, GH mRNA expression appeared to be localized perinuclearly around erythrocytes in the blood vessels of the inner ear epithelia. In order to examine the effects of endogenous GH on the process of cell proliferation in the ear, a GH antagonist was injected into zebrafish immediately following acoustic trauma, resulting in significantly decreased cell proliferation one day post-trauma in all three zebrafish inner ear end organs. CONCLUSIONS/SIGNIFICANCE: Our results show that exogenous GH promotes post-trauma auditory hair cell regeneration in the zebrafish ear through stimulating proliferation and suppressing apoptosis, and that endogenous GH signals are present in the zebrafish ear during the process of auditory hair cell regeneration

    The Tnt1 Retrotransposon Escapes Silencing in Tobacco, Its Natural Host

    Get PDF
    Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host

    Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript

    Get PDF
    Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology
    corecore