426 research outputs found
The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation
Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters
A Polymorphism in a Gene Encoding Perilipin 4 Is Associated with Height but not with Bone Measures in Individuals from the Framingham Osteoporosis Study
There is increasing interest in identifying new pathways and candidate genes that confer susceptibility to osteoporosis. There is evidence that adipogenesis and osteogenesis may be related, including a common bone marrow progenitor cell for both adipocytes and osteoblasts. Perilipin 1 (PLIN1) and Perilipin 4 (PLIN4) are members of the PATS family of genes and are involved in lipolysis of intracellular lipid deposits. A previous study reported gender-specific associations between one polymorphism of PLIN1 and bone mineral density (BMD) in a Japanese population. We hypothesized that polymorphisms in PLIN1 and PLIN4 would be associated with bone measures in adult Caucasian participants of the Framingham Osteoporosis Study (FOS). We genotyped 1,206 male and 1,445 female participants of the FOS for four single-nucleotide polymorphism (SNPs) in PLIN1 and seven SNPs in PLIN4 and tested for associations with measures of BMD, bone ultrasound, hip geometry, and height. We found several gender-specific significant associations with the measured traits. The association of PLIN4 SNP rs8887, G>A with height in females trended toward significance after simulation testing (adjusted P = 0.07) and remained significant after simulation testing in the combined-sex model (adjusted P = 0.033). In a large study sample of men and women, we found a significant association between one SNP in PLIN4 and height but not with bone traits, suggesting that PATS family genes are not important in the regulation of bone. Identification of genes that influence human height may lead to a better understanding of the processes involved in growth and development
Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential
Recently adipose tissue has become a research topic also for the searching for an alternative stem cells source to use in cell based therapies such as tissue engineer.
In fact Adipose Stem Cells (ASCs) exhibit an important
differentiation potential for several cell lineages such as chondrogenic, osteogenic, myogenic, adipogenic and endothelial
cells. ASCs populations isolated using standard methodologies (i.e., based on their adherence ability) are very heterogeneous but very few studies have analysed this
aspect. Consequently, several questions are still pending, as for example, on what regard the existence/ or not of distinct ASCs subpopulations. The present study is originally aimed at isolating selected ASCs subpopulations, and to analyse their behaviour towards the heterogeneous population regarding the expression of stem cell markers and also regarding their osteogenic and chondrogenic differentiation potential. Human Adipose derived Stem Cells (hASCs)
subpopulations were isolated using immunomagnetic beads coated with several different antibodies (CD29, CD44, CD49d, CD73, CD90, CD 105, Stro-1 and p75) and were characterized by Real Time RT-PCR in order to assess the expression of mesenchymal stem cells markers (CD44,
CD73, Stro-1, CD105 and CD90) as well as known markers of the chondrogenic (Sox 9, Collagen II) and osteogenic lineage (Osteopontin, Osteocalcin). The
obtained results underline the complexity of the ASCs population demonstrating that it is composed of several subpopulations, which express different levels of ASCs markers and exhibit distinctive differentiation potentials.
Furthermore, the results obtained clearly evidence of the advantages of using selected populations in cell-based therapies, such as bone and cartilage regenerative medicine
approaches.EU funded Marie Curie Actions Alea Jacta Est
for a PhD fellowship. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283)
Low temperature exposure induces browning of bone marrow stem cell derived adipocytes in vitro
Brown and beige adipocytes are characterised as expressing the unique mitochondrial uncoupling protein (UCP)1 for which the primary stimulus in vivo is cold exposure. The extent to which cold-induced UCP1 activation can also be achieved in vitro, and therefore perform a comparable cellular function, is unknown. We report an in vitro model to induce adipocyte browning using bone marrow (BM) derived mesenchymal stem cells (MSC), which relies on differentiation at 32°C instead of 37°C. The low temperature promoted browning in adipogenic cultures, with increased adipocyte differentiation and upregulation of adipogenic and thermogenic factors, especially UCP1. Cells exhibited enhanced uncoupled respiration and metabolic adaptation. Cold-exposed differentiated cells showed a marked translocation of leptin to adipocyte nuclei, suggesting a previously unknown role for leptin in the browning process. These results indicate that BM-MSC can be driven to forming beige-like adipocytes in vitro by exposure to a reduced temperature. This in vitro model will provide a powerful tool to elucidate the precise role of leptin and related hormones in hitherto functions in the browning process
P2Y2 and P2Y6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues
Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells
Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm 2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm 2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated AS
Rapid and high-efficiency generation of mature functional hepatocyte-like cells from adipose-derived stem cells by a three-step protocol
Suppression of zinc finger protein 467 alleviates osteoporosis through promoting differentiation of adipose derived stem cells to osteoblasts
Osteoblast and adipocyte are derived from common mesenchymal progenitor cells. The bone loss of osteoporosis is associated with altered progenitor differentiation from an osteoblastic to an adipocytic lineage. In this study, a comparative analysis of gene expression profiling using cDNA microarray and realtime-PCR indicated that Zinc finger protein 467 (Zfp467) involved in adipocyte and osteoblast differentiation of cultured adipose derived stem cells (ADSCs). Our results showed that RNA interference for Zfp467 in ADSCs inhibited adipocyte formation and stimulated osteoblast commitment. The mRNA levels of osteogenic and adipogenic markers in ADSCs were regulated by si-Zfp467. Zfp467 RNAi in ADSCs could restore bone function and structure in an ovariectomized (OVX)-induced osteoporotic mouse model. Thus Zfp467 play an important role in ADSCs differentiation to adipocyte and osteoblast. This has relevance to therapeutic interventions in osteoporosis, including si-Zfp467-based therapies currently available, and may be of relevance for the use of adipose-derived stem cells for tissue engineering
Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells
Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology
Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors
<p>Abstract</p> <p>Background</p> <p>Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated.</p> <p>Results</p> <p>Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as transiently and stably transfected with appropriate parameters, without detrimental effect on their differentiation properties. Moreover, green fluorescent protein alone, fused to <it>neo </it>gene, or co-expressed as bi-cistronic reporter constructs, driven by viral and house-keeping gene promoters, were tested. The better expressed cassette was employed to stably transfect Adipose-Derived Stromal Cells for cell therapy purposes. Stably transfected Equine Adipose-Derived Stromal Cells with a heterologous secreted viral antigen were able to immunize horses upon injection into the lateral wall of the neck.</p> <p>Conclusion</p> <p>This study provides the methods to successfully transgenize Adipose-Derived Stromal Cells both by lentiviral vector and by transfection using optimized constructs with suitable promoters and reporter genes. In conclusion these findings provide a working platform for the delivery of potentially therapeutic proteins to the site of cells injection via transgenized Equine Adipose-Derived Stromal Cells.</p
- …
