5,960 research outputs found
Genome-wide profiling of uncapped mRNA
Gene transcripts are under extensive posttranscriptional regulation, including the regulation of their
stability. A major route for mRNA degradation produces uncapped mRNAs, which can be generated by
decapping enzymes, endonucleases, and small RNAs. Profiling uncapped mRNA molecules is important for
the understanding of the transcriptome, whose composition is determined by a balance between mRNA
synthesis and degradation. In this chapter, we describe a method to profile these uncapped mRNAs at the
genome scale
Use of q-values to Improve a Genetic Algorithm to Identify Robust Gene Signatures
Several approaches have been proposed for the analysis of DNA microarray datasets, focusing on the performance and robustness of the final feature subsets. The novelty of this paper arises in the use of q-values to pre-filter the features of a DNA microarray dataset identifying the most significant ones and including this information into a genetic algorithm for further feature selection. This method is applied to a lung cancer microarray dataset resulting in similar performance rates and greater robustness in terms of selected features (on average a 36.21% of robustness improvement) when compared to results of the standard algorithm
Usefulness of ultrasonography in the emergency department to a patient with recurrent abdominal pain
Scattering Amplitudes and Toric Geometry
In this paper we provide a first attempt towards a toric geometric
interpretation of scattering amplitudes. In recent investigations it has indeed
been proposed that the all-loop integrand of planar N=4 SYM can be represented
in terms of well defined finite objects called on-shell diagrams drawn on
disks. Furthermore it has been shown that the physical information of on-shell
diagrams is encoded in the geometry of auxiliary algebraic varieties called the
totally non negative Grassmannians. In this new formulation the infinite
dimensional symmetry of the theory is manifest and many results, that are quite
tricky to obtain in terms of the standard Lagrangian formulation of the theory,
are instead manifest. In this paper, elaborating on previous results, we
provide another picture of the scattering amplitudes in terms of toric
geometry. In particular we describe in detail the toric varieties associated to
an on-shell diagram, how the singularities of the amplitudes are encoded in
some subspaces of the toric variety, and how this picture maps onto the
Grassmannian description. Eventually we discuss the action of cluster
transformations on the toric varieties. The hope is to provide an alternative
description of the scattering amplitudes that could contribute in the
developing of this very interesting field of research.Comment: 58 pages, 25 figures, typos corrected, a reference added, to be
published in JHE
Heavy Squarks at the LHC
The LHC, with its seven-fold increase in energy over the Tevatron, is capable
of probing regions of SUSY parameter space exhibiting qualitatively new
collider phenomenology. Here we investigate one such region in which first
generation squarks are very heavy compared to the other superpartners. We find
that the production of these squarks, which is dominantly associative, only
becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However,
discovery of this scenario is complicated because heavy squarks decay primarily
into a jet and boosted gluino, yielding a dijet-like topology with missing
energy (MET) pointing along the direction of the second hardest jet. The result
is that many signal events are removed by standard jet/MET anti-alignment cuts
designed to guard against jet mismeasurement errors. We suggest replacing these
anti-alignment cuts with a measurement of jet substructure that can
significantly extend the reach of this channel while still removing much of the
background. We study a selection of benchmark points in detail, demonstrating
that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC
with L~10(100)fb-1
Quantum biology on the edge of quantum chaos
We give a new explanation for why some biological systems can stay quantum
coherent for long times at room temperatures, one of the fundamental puzzles of
quantum biology. We show that systems with the right level of complexity
between chaos and regularity can increase their coherence time by orders of
magnitude. Systems near Critical Quantum Chaos or Metal-Insulator Transition
(MIT) can have long coherence times and coherent transport at the same time.
The new theory tested in a realistic light harvesting system model can
reproduce the scaling of critical fluctuations reported in recent experiments.
Scaling of return probability in the FMO light harvesting complex shows the
signs of universal return probability decay observed at critical MIT. The
results may open up new possibilities to design low loss energy and information
transport systems in this Poised Realm hovering reversibly between quantum
coherence and classicality
Emerging Non-Anomalous Baryonic Symmetries in the AdS_5/CFT_4 Correspondence
We study the breaking of baryonic symmetries in the AdS_5/CFT_4
correspondence for D3 branes at Calabi-Yau three-fold singularities. This
leads, for particular VEVs, to the emergence of non-anomalous baryonic
symmetries during the renormalization group flow. We claim that these VEVs
correspond to critical values of the B-field moduli in the dual supergravity
backgrounds. We study in detail the C^3/Z_3 orbifold, the cone over F_0 and the
C^3/Z_5 orbifold. For the first two examples, we study the dual supergravity
backgrounds that correspond to the breaking of the emerging baryonic symmetries
and identify the expected Goldstone bosons and global strings in the infra-red.
In doing so we confirm the claim that the emerging symmetries are indeed
non-anomalous baryonic symmetries.Comment: 65 pages, 15 figures;v2: minor changes, published versio
A slice of AdS_5 as the large N limit of Seiberg duality
A slice of AdS_5 is used to provide a 5D gravitational description of 4D
strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory
in the conformal window at large N is described by the 5D bulk, while its
weakly coupled (magnetic) dual is confined to the IR brane. This framework can
be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original
Randall-Sundrum model. In addition, we use our framework to study
strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces.
This leads to a unified scenario that connects the extra-ordinary gauge
mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st
Towards the F-Theorem: N=2 Field Theories on the Three-Sphere
For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean
path integrals on the three-sphere can be calculated using the method of
localization; they reduce to certain matrix integrals that depend on the
R-charges of the matter fields. We solve a number of such large N matrix models
and calculate the free energy F as a function of the trial R-charges consistent
with the marginality of the superpotential. In all our {\cal N}=2
superconformal examples, the local maximization of F yields answers that scale
as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are
7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local
F-maximization is equivalent to the minimization of the volume of Y over the
space of Sasakian metrics, a procedure also referred to as Z-minimization.
Moreover, we find that the functions F and Z are related for any trial
R-charges. In the models we study F is positive and decreases along RG flows.
We therefore propose the "F-theorem" that we hope applies to all 3-d field
theories: the finite part of the free energy on the three-sphere decreases
along RG trajectories and is stationary at RG fixed points. We also show that
in an infinite class of Chern-Simons-matter gauge theories where the
Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at
large N. This non-trivial scaling matches that of the free energy of the
gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement
Entanglement Entropy and Wilson Loop in St\"{u}ckelberg Holographic Insulator/Superconductor Model
We study the behaviors of entanglement entropy and vacuum expectation value
of Wilson loop in the St\"{u}ckelberg holographic insulator/superconductor
model. This model has rich phase structures depending on model parameters. Both
the entanglement entropy for a strip geometry and the heavy quark potential
from the Wilson loop show that there exists a "confinement/deconfinement" phase
transition. In addition, we find that the non-monotonic behavior of the
entanglement entropy with respect to chemical potential is universal in this
model. The pseudo potential from the spatial Wilson loop also has a similar
non-monotonic behavior. It turns out that the entanglement entropy and Wilson
loop are good probes to study the properties of the holographic superconductor
phase transition.Comment: 23 pages,12 figures. v2: typos corrected, accepted in JHE
- …
