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1 Introduction

Seiberg duality [1, 2] is a powerful tool for studying strong dynamics, enabling calcu-

lable approaches to otherwise intractable questions, as for example in the discovery of

metastable minima in the free magnetic phase of supersymmetric quantum chromodynam-

ics (SQCD) [3] (ISS). Despite such successes, the phenomenological applications of Seiberg

duality are somewhat limited, simply by the relatively small number of known examples.

An arguably more flexible tool for thinking about strong coupling is the gauge/gravity

correspondence, namely the existence of gravitational duals for strongly-coupled gauge

theories [4–6]. Such duals are known in certain cases to be equivalent to a cascade of

Seiberg dualities, the prototypical example being an SU(N + M) × SU(N) theory [7, 8],

which describes the moduli space of a theory of branes and M fractional branes on the

warped-deformed conifold (see [9, 10] for reviews). Warped geometries are indeed gener-

ally characteristic of compactifications with flux [11]. Metastable ISS-like supersymmetry

breaking can be implemented by having various different brane configurations at the end

of such throat-like geometries, as in for example [12–15], and can be successfully mediated

as in [16–18].

It is natural to suppose that these and similar examples can be approximated by

the “slice-of-AdS” Randall-Sundrum scenario [19] (RS1). The RS1 formulation provides

an ideal framework for discussing the effects of strong coupling without having to use
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the full complexity of string theory. Indeed the phenomenology is typically dominated

by the low energy modes, and the throat itself enters mainly through the Kaluza-Klein

(KK) spectrum. Moreover the latter tends to be linear, so that certain phenomena can be

rather universal. RS1 can therefore be a useful approximation because precise knowledge

of the gravitational dual is often unnecessary, aside from its general scale and warping.

One example, again in the context of supersymmetry breaking, is gaugino mediation [20–

29]. There supersymmetry breaking is mediated to scalars localized on the UV brane via

bulk gauge modes. However, the resulting suppression of the scalar masses is relatively

independent of whether the bulk is flat or warped, and depends only on the separation in

the approximately linear KK spectrum.

On the other hand there is an obvious drawback of RS1: it is unclear whether the

strongly coupled 4D system that is supposed to correspond to a given configuration actu-

ally exists. Because of this it seems interesting to study strongly coupled 4D field theories

that have an RS1-like configuration, namely a period of conformal running with a well

behaved and calculable perturbative theory in the infra-red. In particular, we would like

to begin with simple N = 1 4D dynamics that has certain properties (such as supersymme-

try breaking), and by taking a strong coupling limit introduce desirable features of extra

dimensional physics (such as gaugino mediation).

This paper presents a straightforward method based on Seiberg duality by which such

models can be constructed. It works as follows. Suppose one is interested in reproducing

an RS1 configuration that has particular weakly coupled theories located on the IR brane,

and the UV brane. The holographic principle tells us that the UV theory should exist as

elementary degrees of freedom in the 4D theory whereas the IR theory should be composite.

Hence the IR theory (including any gauge degrees of freedom) can be identified as the free-

magnetic dual of an electric/magnetic pair. Assuming for definiteness that the theory is

N = 1, SU(n) and vector-like, then there should be F > 3n fundamental flavours in the IR

theory for it to be IR-free. This theory becomes strongly coupled at some scale ΛIR, above

which an electric theory takes over. Many different (indeed an infinity of) electric theories

flow to this particular magnetic theory. The canonical one is an asymptotically free N = 1

SU(N) theory, where N = F −n. However, consider instead an SU(N) electric theory with

F1 = ∆F + F flavours, of which ∆F have mass ΛIR, with the rest being massless. If we

choose 3
2N < F1 < 3N , then this theory is in the conformal window. Above the mass-scale

ΛIR the theory flows to a fixed point and can enjoy an arbitrarily long period of conformal

running. At the scale ΛIR however, we integrate out the ∆F heavy flavours, and the theory

flows to the same weakly coupled magnetic theory in the IR. Moreover the SU(N) theory

approaches strong coupling as F1 → 3
2N . By taking a large N limit and adding massive

and massless flavours to keep the ratio N/F1 fixed (the Veneziano limit [30]), one can

arrange for the conformal fixed point to be at arbitrarily strong coupling. In this limit, we

replace the period of conformal running with a bulk gravitational dual, and arrive at an

RS1 configuration, with the global flavour symmetries becoming bulk gauge symmetries,

the magnetic theory confined to the IR brane, and any elementary degrees of freedom to

which the theory weakly couples, becoming degrees of freedom on the UV brane. In a

sense this is simply the shortest possible cascade, in which strong and weak coupling are

connected by a single Seiberg duality.
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Our bulk is required to be a slice of the gravitational dual of strongly coupled SQCD,

whatever that may be. Since the N = 1 conformal theory has an R-symmetry, a good

candidate for the geometry is six dimensional, namely AdS5 × S1 with the R-symmetry

corresponding to translations along the circle, S1. A solution of this type for general

N,F was constructed in ref. [31] using the effective action of six-dimensional non-critical

superstrings. This specific background can be realized with a stack of D3 branes at the tip

of the SL(2, R)/U(1) cigar, with the flavours of fundamental and antifundamental being

provided by space-time filling uncharged D5 branes.

It should be noted that this background is not under good theoretical control. Its

curvature is large so the solution will get order one corrections from higher-derivative terms

in the effective action. Indeed as argued in ref. [32] and also in section 3.3, it is likely that

there can never be a weakly curved gravitational dual of SQCD in the conformal window.

Nevertheless, it is also likely that the effect of the large curvature will be to change the

parameters of the solution in ref. [31] while leaving its general properties intact [33, 34]. As

we have said, for phenomenological purposes these general properties can often be sufficient.

We will present in this paper two applications that illustrate the approach. Following

a summary of the Renormalisation Group (RG) properties of SQCD in the next section,

and more details of the configuration in section 3, we will construct an N = 1 MSSM-

on-the-IR-brane type of model, reminiscent of the original RS1 configuration. We begin

with the basic MSSM and find the electric theory by identifying SU(2)L with Sp(1), and

then performing an Sp(N) type Seiberg duality. In order to be able to put the electric

theory in the conformal window and then take the large N limit, the only modification

we need to make to the spectrum of the usual MSSM is to include an arbitrary number

of heavy Higgs pairs. The left-handed states are all identified as composite states, as are

the gauge degrees of freedom of SU(2)L. The right-handed fields on the other hand can be

an arbitrary mixture of elementary and composite states (with the latter being identified

as the “mesons” of the Seiberg duality). The remaining SU(3)c × U(1)Y gauge degrees of

freedom are bulk modes.

The second application is to gauge mediation of supersymmetry breaking. There has

been recent interest in 4D models that can reproduce the phenomenology associated with

gaugino mediation, namely gaugino masses that are much heavier than scalar masses at

the mediation scale [20–25]. While this set-up is simple to configure in extra-dimensional

models, the underlying supersymmetry breaking has to be added by hand. The recent

interest has therefore been in finding models in which the dynamics of supersymmetry

breaking is included [26–29]. Here we begin with the “simplified gauge mediation” scenario

of Murayama and Nomura [35]. We show that taking the large N limit of this theory as

described above yields a gaugino mediation model in AdS, with metastable supersymme-

try breaking on the IR-brane, matter and messenger fields on the UV brane and gauge

fields in the bulk, a scenario that has been considered in a number of phenomenological

applications [36, 37]. As in conventional gaugino mediation, the scalar mass squareds are

generated by (5D) one loop diagrams that are relatively suppressed due to the bulk sepa-

ration of matter fields and supersymmetry breaking. We find that (in a certain limit) the

suppression is of the form m2
i ∼ M2

λ/bCFT where bCFT is the bulk contribution to the beta
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SU(N) SU(F )L SU(F )R U(1)B U(1)R

Q � � 1 1
N

1 − N
F

Q̃ � 1 � − 1
N

1 − N
F

Table 1. Spectrum and anomaly free charges in SQCD.

function coefficient, which effectively counts the messenger content of the strongly coupled

CFT. This is the strong coupling version of the usual m2
i ∼ M2

λ/Nmess relation that one

finds in perturbative extra-ordinary gauge mediation [38]. From this “extra-ordinary gauge

mediation limit”, we will show how one can go continuously to the opposite extreme of

supersymmetry breaking in AdS by twisted boundary conditions [23], which we refer to as

the “gaugino mediation limit”.

2 UV completions of weakly coupled SQCD

We begin by discussing the possible UV completions of SQCD from the Seiberg duality

point of view. It is useful to study the flow down from high energies. In the far UV we

assume a standard N = 1 supersymmetric QCD theory which we refer to as the “electric

theory”. This is an SU(N) theory with F flavours [1, 2]. With no superpotential this

theory has a global SU(F )L×SU(F )R×U(1)B×U(1)R symmetry. These global symmetries

are anomaly free with respect to the gauge symmetry. There is also an anomalous U(1)A

symmetry that will be irrelevant for our discussion. The particle content is shown in table 1.

Although the features of the RG flow of these theories will be well known to many

readers, it is for clarity worth recapping those elements that we need for our discussion.1

The coupling runs according to the exact NSVZ β-function [39]

β 8π2

g2

=
3N − F (1 − γQ)

1 − Ng2

8π2

(2.1)

where γQ is the anomalous dimension of the quarks, given at leading order by

γQ = − g2

8π2

(

N2 − 1

N

)

. (2.2)

Assume that the high energy theory begins in the so-called conformal window,

3

2
N < F < 3N . (2.3)

The theory then runs to a fixed point as can be most easily seen when it is just inside the

conformal window, F = 3(N − ν) in the limit where 1 ≤ ν ≪ N . Solving for the vanishing

of the beta function gives the anomalous dimension of the quarks to be order ν and a fixed

point at

g2
∗ =

8π2

N2 − 1
ν . (2.4)

1The behaviour of this theory under RG flow has been described in many excellent texts, for example

ref. [10].
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SU(n) SU(F )L SU(F )R U(1)B U(1)R

q � � 1 1
n

1 − n
F

q̃ � 1 � − 1
n

1 − n
F

ϕ 1 � � 0 2 n
F

Table 2. Spectrum and anomaly free charges in SQCD

Decreasing the number of flavours increases the value of the coupling at the fixed point,

until in the opposite limit, where F = 3
2(N + ν), it approaches strong coupling: solving for

the vanishing of the beta function there, one finds that

γQ = −1 + 2
ν

N
, (2.5)

and therefore by eq. (2.2) we have g2
∗N & 8π2.2 This result can also be derived from

the fact that at a conformal fixed point the R-charges and dimensions of operators O are

related as dim O = 3
2RO: this relation and the definition dim Q = 1 +

γQ

2 give

1 +
γQ

2
=

3

2

(

1 − N

F

)

, (2.6)

the same result as that deduced from the vanishing of the NSVZ beta function in eq. (2.1)

The theory at the IR fixed point has an equivalent magnetic description. The magnetic

dual theory (which we will call SQCD) has a gauged SU(n) symmetry, where n = F −
N [1, 2]. Its spectrum is given in table 2. (Throughout we will denote magnetic superfields

with small letters and electric superfields with capitals.) The two theories satisfy all the

usual tests of anomaly and baryon matching if one adds a superpotential

Wmag = h qϕq̃. (2.7)

The equation of motion of the elementary meson, ϕ then projects the superfluous composite

meson qq̃ out of the moduli space of the magnetic theory. Obviously the magnetic theory

is also inside the conformal window, but where the electric description is strongly coupled

the magnetic one is weakly coupled, and vice-versa.

Consider the theory with F = 3
2(N + ν) with N ≫ ν. In the absence of the coupling h

the SQCD theory would clearly be no different from the original SQCD one; the magnetic

dual has F = 3(n − ν) and hence a fixed point at

h∗ = 0

ḡ2
∗ =

8π2

n2 − 1
ν . (2.8)

This is not however the fixed point corresponding to that of the electric theory and indeed

any non-zero coupling h precipitates flow to a new fixed point. The dim O = 3
2RO argument

2Although the anomalous dimension in eq. (2.2) is accurate to one loop, the NSVZ beta function in

eq. (2.1) is exact. Hence even though the precise form of the anomalous dimension γQ is unknown, as long

as it can approach arbitrarily close to −1, a fixed point will be found.
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predicts it to be where

γq = 1 − 3n

F
; γϕ = −2 +

6n

F
. (2.9)

Note that the beta function of the coupling h is βh = h
2 (γϕ + 2γq) which indeed vanishes

at this point. The anomalous dimensions themselves are

γq =
1

16π2

(

Fh2 − 2ḡ2

(

n2 − 1

n

))

= 1 − 3n

F

γϕ =
1

16π2

(

nh2
)

= −2 +
6n

F
, (2.10)

giving

n(h′
∗)

2

8π2
=

12ν

F

(ḡ′∗)
2 =

n(n + 2F )

4(n2 − 1)
(h′

∗)
2 . (2.11)

When F = 3(n − ν) and n ≫ ν both fixed points in the magnetic description are at

weak coupling. And in the opposite limit where F = 3
2(n + ν), both fixed points are at

strong coupling with nh2
∗ & 8π2. A numerically evolved example of such flow is shown in

figure 1a: the solid and dashed lines are the flows in the electric and magnetic theories

described above. The magnetic theory is indeed seen to flow initially towards the unstable

fixed point with h∗ = 0, g∗, before ending up at the stable fixed point h′
∗, g′∗. The fixed

point values of the couplings indeed obey the above relations.

Now let us consider what happens when we add a relevant deformation to the electric

model — i.e. a new term in the superpotential. If this new term breaks the remaining R-

symmetry the theory will flow, either to a new fixed point, or to an IR-free or asymptotically

free theory. The simplest example of such a deformation is a quark mass term in the

electric theory:

Welec = (mQ)jiQ
iQ̃j , (2.12)

where i, j are flavour indices. Consider the case where mQ is diagonal of the form

mQ = m0

(

1F1×F1 0F1×F2

0F2×F1 0F2×F2

)

,

where F1 + F2 = F , and where this value is set at some UV scale, ΛUV. This term then

explicitly breaks both the R-symmetry and the global symmetry down to

SU(F )L × SU(F )R × U(1)B × U(1)R → SU(F1)D × SU(F2)L × SU(F2)R × U(1)B . (2.13)

At low scales one can integrate out F1 quark/antiquark pairs, leaving F2 light flavours.

The global symmetry is further broken, but a (different) R-symmetry is recovered:

SU(F1)D ×SU(F2)L ×SU(F2)R ×U(1)B → SU(F2)L ×SU(F2)R ×U(1)B ×U(1)R′ . (2.14)

Thus provided that F2 > 3N
2 the theory remains in the conformal window and flows to a

new fixed point at stronger coupling than the previous one, corresponding to F2 flavours

– 6 –
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(a) (b) (c)

-t

Λ 8
Π

2

-t

Λ 8
Π

2

-t

Λ 8
Π

2

Figure 1. Types of SQCD RG flow with t = log E. The solid and dashed lines are the electric

and magnetic theories and λ = g2N or ḡ2n respectively. The undeformed theories flow to their

conformal fixed points in (a). Upon adding a mass deformation the theories flow to new fixed points

as in (b) or to IR-free theories as in (c). The magnetic theory was started at small coupling in

order to show its evolution towards the unstable fixed point first h∗ = 0, g∗ before ending up at the

stable fixed point h′

∗
, g′

∗
.

and N colours; this is the solid line in figure 1b. The scale at which one can integrate out

the heavy quarks is not simply m0 because the quarks have a dimension 3
2(1−N/F ) which

is different from unity. One finds that the mass of the canonically normalised quarks is

larger than the energy scale, when the latter drops below a value ΛIR given by

ΛIR = m0

(

ΛIR

ΛUV

)2−∆ϕ

, (2.15)

where ∆ϕ = 3
2(1−N/F ) is the dimension of QQ̃. (Note that at weak coupling when ∆ϕ =

2 + γϕ this gives the usual perturbative approximation ΛIR = m0(1 − γϕ log(ΛIR/ΛUV)).)

The corresponding deformation in the magnetic theory is a linear meson term that

induces a Higgsing; the magnetic superpotential becomes

Wmag = h qϕq̃ − hµ2
ϕϕ , (2.16)

where the linear ϕ term corresponds to the quark mass term and has the same R-charge

and flavour structure:

µ2
ϕ = µ2

0

(

1F1×F1 0F1×F2

0F2×F1 0F2×F2

)

.

This deformation causes F1 of the quarks to acquire VEVs of the form

〈qq̃〉 = µ2
ϕ . (2.17)

The gauge symmetry is Higgsed down to SU(n2) where n2 = n − F1 = F2 − N , and F2

quarks remain light. (Note that we assume F1 ≤ n.) One can arrange for the change

in the number of degrees of freedom to be at the same energy scale in both theories by

appropriately choosing µ0. This behaviour is shown in figure 1b.

If one chooses F1 such that N + 1 < F2 < 3N
2 then the behaviour is different again

(c.f. figure 1c). At scales below ΛIR the theory falls out of the conformal window (so to

speak) and into the free magnetic range. The gauge coupling of the electric theory hits

– 7 –
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a Landau pole below ΛIR and can be matched onto an IR free magnetic description. On

the other hand the original magnetic theory flows smoothly (without encountering strong

coupling) to the same IR free theory. This is classic quasi-conformal (walking) behaviour

(see ref. [40] for a recent summary).

Note that upon adding the mass deformation the electric and magnetic theories de-

scribe the same physics at scales much higher than ΛIR and also in the far IR well below

it. Around ΛIR however we see that they are very different. Thus it is important to realise

that these are two physically distinct types of UV completion of a single IR free theory.

The first consists of a Landau pole followed by a relatively strongly coupled conformal UV

phase. The second consists of a smooth transition to a weakly coupled conformal theory

in the UV. A third possible type of UV completion would of course be the asymptotically

free electric Seiberg dual of the IR free theory.

3 A 5D dual description in the strong coupling limit

3.1 The general set-up

One of the three possibilities for the UV completion of the deformed SQCD (with a quark

mass term in the electric theory) is a relatively strongly coupled conformal phase in the

limit of large N . By the AdS/CFT correspondence [4], this phase admits a weakly-coupled

5D gravitational description. Furthermore given that the 4D deformed SQCD is only

conformal below a UV scale, with conformal invariance broken by a mass deformation in

the IR, the dual description must be a slice of AdS5. A simple way to mimic these features

is to introduce a UV brane and an IR brane corresponding to an RS1 scenario [19]. This is

a crude approximation to the underlying dynamics of the microscopic theory. Nevertheless

as stressed in the Introduction, many of the qualitative features can be understood in

this simplified framework, just as AdS/QCD models are thought to encapsulate certain

features of QCD. In this subsection we wish first to sketch out the general features that

such a description must have, based on known attempts in the literature to construct

gravitational duals of strongly coupled SQCD. We then go on to consider the possible 5D

configurations that correspond to strongly coupled 4D Seiberg duals.

First the general set-up. We take a slice of AdS and place a UV brane at ΛUV and an

IR brane at a confinement scale loosely associated with ΛIR (we will discuss this point in

more detail below). In order to accommodate the intrinsic U(1)R symmetry, the dual 5D

description must actually be AdS5×U(1). A solution of this type in the conformal window

for general N,F was constructed in ref. [31] from the effective action of six-dimensional

non-critical superstrings. Even though this solution is subject to order one corrections from

higher-derivative terms in the effective action, it does provide the required background for

the strongly-coupled deformed SQCD. In the string frame the effective 5D coupling is [31]

1

g2
5

=
3

4k
NF, (3.1)
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where k is the AdS curvature scale, so that in the limit N,F ≫ 1, with the ratio N/F

fixed, the theory becomes weakly coupled. The AdS5 curvature scale is of order the string

scale and in the conformal window the radius of the circle S1 satisfies 1
9 < kRS1 < 2

9 .

As a first approximation we can ignore the S1 since its radius remains approximately

constant, and consider the 5D spacetime xM = (xµ, z) with the fifth dimension z compact-

ified on an S1/Z2 interval with 3-branes located at zUV = k−1 ∼ Λ−1
UV (the UV brane) and

zIR ∼ Λ−1
IR (the IR brane) where zUV/zIR = ΛIR/ΛUV. The AdS5 metric is written using

conformal coordinates

ds2 =
1

(kz)2
(ηµνdxµdxν + dz2), (3.2)

where ηµν = diag(− + ++) is the 4D Minkowski metric.

The 5D field content is dictated by the AdS/CFT dictionary. In the 4D electric theory

(SQCD) at strong coupling, corresponding to F = 3/2(N + ν), each operator O(x) corre-

sponds to a field Φ(x, z) in the 5D bulk theory. Furthermore, global symmetries of the 4D

theory are interpreted as local gauge symmetries in the bulk. Therefore we assume that

the 5D theory has an SU(F )L × SU(F )R × U(1)B gauge symmetry. Note that the U(1)R
symmetry is associated with the isometry of the S1. We are interested in a deformation

corresponding to chiral symmetry breaking. Therefore we introduce bulk fields Aa
Lµ and

Aa
Rµ, with a = 1 . . . N corresponding to the vector currents of the quark fields, and a bifun-

damental field Φi
j with i, j = 1 . . . F , corresponding to the operator QiQ̃j (in the sense that

the UV VEV of Φ determines mQ). The 5D masses m5 of the bulk fields are determined

by the relation, m2
5 = (∆− p)(∆ + p− 4)k2 where ∆ is the dimension of the corresponding

p-form operator [5, 6]. For a vector current with ∆ = 3 this corresponds to massless 5D

vector fields. The dimensionality of the bulk field corresponding to the squark bilinear QQ̃

(whose dimension is 4 − dim(QQ̃)) can be deduced from the R-charges of Q in table 1 to

be ∆ = 4− 3(1−N/F ) so that 2 < ∆ < 3 inside the conformal window. Likewise the field

corresponding to the quark bilinear has ∆ = 3 − 3(1 − N/F ) with 1 < ∆ < 2. The scalar

field component of Φ has a 5D mass-squared m2
5Φ = −3k2(1 − N/F )(1 + 3N/F ) which

approaches −3k2 at F = 3
2N . In the underlying non-critical string theory the vector fields

represent 55 strings propagating on the worldvolume of the F spacetime filling D5 branes,

while Φ represents the open string tachyons on the D5 branes.

The 5D Lagrangian consists of two parts involving a bulk N = 2 vector supermultiplet

(V, χ) containing an N = 1 vector supermultiplet, V and chiral supermultiplet χ, and an

N = 2 hypermultiplet (Φ,Φc), containing N = 1 chiral supermultiplets Φ,Φc. It is given

by [41–44]

S =

∫

d5x

{

∫

d4θ
1

(kz)3

[

Φe−V Φ† + Φce
V Φ†

c +
2

g2
5

(

∂5V − kz√
2
(χ + χ†)

)2
]

+

∫

d2θ

[

1

4g2
5

WαW α +
1

(kz)3

[

Φc

(

Dz −
(

3

2
− c

)

1

z

)

Φ

+δ(z − zUV)WUV + δ(z − zIR)WIR

]

+ h.c.

]}

– 9 –
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=

∫

d5x
√−g

[

−|DΦ|2 − m2
5Φ|Φ|2 − 1

4g2
L

F 2
L − 1

4g2
R

F 2
R + . . .

]

, (3.3)

where DµΦ = ∂µΦ− iALµΦ+ iARµΦ with AL,R = Aa
L,Rta, and c is a bulk mass parameter.

Note that at the massless level the orbifold breaks the N = 2 supersymmetry down to

N = 1 supersymmetry. We shall choose the Φ superfield to be even under the orbifold

action, and Φc to be odd.

Inserting the F -term equations,

F ∗ = ∂zφc −
(

3

2
+ c

)

1

z
φc − δ(z − zUV)∂ΦWUV − δ(z − zIR)∂ΦWIR ,

F ∗
c = −∂zφ +

(

3

2
− c

)

1

z
φ , (3.4)

into the equations of motion results in a set of well-known bulk solutions for the components

of Φ at arbitrary momentum, p. The bulk solutions for the zero modes (p = 0) correspond

simply to setting the F -terms to zero [41, 42, 44]

φ(z) = φ(zUV)

(

z

zUV

) 3
2
−c

,

φc(z) = ε(z)φc(z
+
UV)

(

z

zUV

)
3
2
+c

, (3.5)

where ε(z) = sign(z) forces φc to be odd and where φc and φ are the scalar components of

Φc and Φ respectively. Since we are choosing Φc to be odd under the orbifolding then we

can just set φc(zIR) = φc(zUV) = δFc(zIR) = δFc(zUV) = 0. Demanding the vanishing of the

delta-function contributions to F ∗ gives the additional constraint

1

(kz)
3
2
+c

∂W

∂Φ

∣

∣

∣

∣

∣

z=zUV

= − 1

(kz)
3
2
+c

∂W

∂Φ

∣

∣

∣

∣

∣

z=zIR

. (3.6)

Alternatively this condition can be derived by considering boundaries at z+
UV and z−IR.

Generally the solutions then have to be consistent with the vanishing of the boundary

terms in the variation of the action:

δS =

∫

d4x

[

(kz)−3

(

δFc
∂W

∂Φc
+ δF

∂W

∂Φ

)]

z=zUV

+

[

(kz)−3

(

δFc
∂W

∂Φc
+ δF

∂W

∂Φ

)]

z=zIR

+
1

2

[

(kz)−3 (δφFc − δφcF − φ δFc + φc δF )
]z=zUV

z=zIR
. (3.7)

Setting the δF component to zero with the solutions of eq. (3.5) also gives eq. (3.6).

Using the AdS/CFT relation ∆ = 2 +
√

4 + m2
5Φ/k2 with m2

5Φ = (c2 + c − 15/4)k2

we find that ∆ = 5/2 + c. The φ solution in (3.5) therefore behaves like φ(z) ∼ z4−∆.

These general solutions have to be matched to whatever VEV Φ may acquire due to brane

interaction terms. In particular we are interested in deformations of the strongly coupled

SQCD by the addition of a quark mass term and a consequent explicit breaking of the
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chiral symmetry. In the 5D description this corresponds to specifying the UV boundary

condition of the bifundamental field Φi
j, such that

1√
k(kz)4−∆

Φi
j

∣

∣

∣

zUV

= (mQ)ij . (3.8)

3.2 The gravitational dual descriptions of Seiberg duality

We now connect this AdS picture with the underlying Seiberg duality, in particular identi-

fying the possible configurations of the bulk and brane theories, the location of the various

degrees of freedom involved, and the brane superpotentials WUV and WIR.

It is natural to suppose in the RS1 context that the composite degrees of freedom

(i.e. the weakly coupled magnetic theory) should be placed on the IR brane. Note that

the magnetic SU(n) gauge fields are forced to appear there because they must be purely

emergent degrees of freedom — they can have no bulk presence since that would imply

that a global symmetry of the strongly coupled theory has become a gauge theory at

low energies, contradicting the theorem of ref. [45]. We have seen that in order for the

underlying strongly coupled theory to have the required mass term, W ⊃ mQQQ̃, there

must be an additional bulk meson Φ whose UV boundary value, by the bulk/boundary

correspondence, acts as a source field for the operator O = QQ̃ through the interaction

W ⊃ ΦQQ̃. (3.9)

In accord with Welec of the electric Seiberg dual, the value of Φ on the UV brane should

be determined by mQ as specified in eq. (3.8). Note that as described in ref. [44], the

holographic correspondence in the supersymmetric theory appears as an interaction in the

superpotential on the UV boundary. Hence the correspondence is between a source and

current superfield so that, in particular, the scalar operator O of the CFT couples to the

F -term of the source superfield.

The fact that mQ is associated with the dynamical degree of freedom Φ in the AdS

picture implies that we should base the rest of the structure on the dual-of-the-dual electric

theory. To see this, let us briefly return to 4D Seiberg duality and rename the meson in the

magnetic theory η ≡ QQ̃/Λ, so that the superpotential is Wmag = ηqq̃. (We shall henceforth

drop the h-couplings unless we are dealing with them specifically, and shall assume them

to be of order unity. We shall also for the moment set the dynamical scales of the electric

and magnetic theories to be degenerate, Λ.) On performing the dual of this theory one

arrives at an alternative (dual-of-the-dual) electric theory with meson Φ ≡ −qq̃/Λ and

superpotential coupling

W ′
elec = ΦQQ̃ − ΛΦη . (3.10)

The first term of eq. (3.10) is of course precisely the required source term of eq. (3.9).

(The minus sign comes from the matching of dynamical scales in the electric and magnetic

theories, as described below in section 3.3.) One of the checks of Seiberg duality is that

this theory flows to the same IR physics as the theory we first started with. Indeed both

Φ and η have masses of order Λ. Upon integrating them out one finds η = QQ̃/Λ, leading

to the same spectrum and zero superpotential as the original theory. However note that
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Φ, VF

ϕ, q, q̃, vnη

WUV = WIR = qϕq̃−mϕΦϕ

mηη(Φ−Φ0)

Figure 2. The first configuration for Seiberg duality in the large N limit. This corresponds to the

“usual” case in which there is a massless meson.The bulk gauge symmetry is SU(F )L × SU(F )R ×
U(1)B. The unbroken symmetry on the IR-brane, SU(F2)L × SU(F2)R × U(1)B, corresponds to

the light quarks in the electric dual. The upper F1 × F1 flavour block of Φ0 has VEVs of
√

km0,

and is consequently Higgsed out of the low energy theory by the Fϕ = 0 condition, at a scale

〈q̂ ˆ̃q〉 = (
√

kmϕ)ΛIR.

Φ, VF

ϕ, q, q̃, vn

WUV = 0 WIR = qϕq̃ − mϕΦϕ

Figure 3. The second configuration for Seiberg duality in the large N limit, when there is no

massless meson, but a field Φ and a coupling ΦQQ̃ in the electric superpotential. As in figure 2, the

bulk meson is the source field for the composite operator O = QQ̃ (i.e. its UV value corresponds

to the quark masses).

we may also choose to keep all the degrees of freedom and dualise (yet again) to a second

magnetic theory. Now the mesons Φ and η are to be treated as elementary and a new

composite meson ϕ ≡ QQ̃/Λ is introduced: the superpotential is

W ′
mag = qϕq̃ + ΛΦϕ − ΛΦη . (3.11)

Integrating out Φ and ϕ− = 1√
2
(η−ϕ) leaves us with the magnetic spectrum and superpo-

tential (Wmag = qϕ+q̃ where ϕ+ = 1√
2
(η +ϕ)) as required. It also identifies the two mesons

ϕ and η.

With this in mind, let us now return to the gravitational dual. The 4D discussion

above implies two possible gravitational dual configurations in the large N limit:
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• Configuration 1 — a massless meson ϕ: In this case, because we have a dy-

namical Φ, we must add a new elementary meson η on the UV brane that has the

same quantum numbers as ϕ. The superpotential on the UV brane must be

WUV = mη(Φ − Φ0)η , (3.12)

where Φ0 = mQ

√
k(kzUV)4−∆ fixes the UV VEV of Φ through the Fη = 0 equation

of motion. The superpotential on the IR brane is of the form

WIR = qϕq̃ − mϕΦϕ . (3.13)

Next let us discuss scales. First note that, using ∆ϕ = 3
2 − c, the purely 4D relation

in eq. (2.15) gives

ΛIR = m0

(

zUV

zIR

) 1
2
+c

, (3.14)

so that the factor that naturally warps the physical scales in this set-up is

(zUV/zIR)
1
2
+c. Now, by comparison with eq. (3.11), mϕ ∼ mη are identified with

the compositeness scale, but not directly. Indeed because Φ is a 5D field mϕ and

mη have mass dimension 1/2. Furthermore canonical normalisation of the fields on

the IR brane leads to the physical Yukawa coupling being of order unity, hence the

normalised brane fields are q̂ = q/(kzIR), ˆ̃q = q̃/(kzIR) and ϕ̂ = ϕ/(kzIR). Thus once

the fields are canonically normalised, the term mϕ gives a physical mass that is also

naturally warped down by a factor (zUV/zIR)
1
2
+c compared to that generated by mη.

(For the most part we will allow mϕ and mη to be free parameters.) The relation

of mϕ and mη to the compositeness scale can be determined by the Higgsing in the

SU(F1)L ×SU(F1)R flavour-block of the magnetic theory corresponding to the heavy

quarks of the electric dual: upon canonically normalising the magnetic quarks and

using eqs. (3.5), (3.8) and (3.14), the Fϕ = 0 condition for WIR gives

〈q̂ ˆ̃q〉 = (kzUV)4−∆(
√

kmϕ)ΛIR . (3.15)

Thus, since ΛIR is the physical mass of the heavy quarks in the electric dual, we

can identify

(kzUV)4−∆
√

kmϕ

as the compositeness scale, and set its value to be ∼ ΛIR. Furthermore the boundary

condition in eq. (3.6) correctly equates the two canonically normalised mesons ϕ̂ and

η̂ and their masses as
(

zUV

zIR

)
1
2
+c

mϕϕ̂ = mηη̂ . (3.16)

This identifies the heavy mode as being mostly η and the orthogonal massless mode

as being mostly ϕ, provided that c > −1
2 . Note that if mϕ = 0, then η = 0 and

we recover the standard Seiberg picture in which the massless meson is identified

entirely as ϕ, and η is integrated out. The set-up for this configuration is as shown

in figure 2.
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• Configuration 2 — no massless meson: In the 4D theory this corresponds to

having just the source term in the electric superpotential without the η field:

Welec = ΦQQ̃. (3.17)

Upon dualizing one finds a magnetic superpotential

Wmag = qϕq̃ + ΛΦϕ . (3.18)

Thus both Φ and ϕ gain a mass of order Λ and may be integrated out of the low

energy theory, leaving no mesons and no superpotential in the magnetic theory. The

gravitational dual has a bulk field for every CFT operator so Φ ↔ QQ̃ must be

there by the bulk/boundary correspondence. Hence the bulk configuration, shown

in figure 3, must be as before but with no additional η meson. For the boundary

superpotentials in the gravitational dual we have

WUV = 0 , (3.19)

and

WIR = qϕq̃ − mϕΦϕ . (3.20)

As the elementary η and composite ϕ mix, an obvious possible extension is to generalize the

picture and have just a single bulk field ϕ. However by the bulk/boundary correspondence,

the VEV of this field on the UV brane would be identified as the source for an operator

in the underlying CFT (i.e. the electric theory). This operator would have to have the

same flavour charges as Φ ∼ qq̃ but such an operator is not readily available in the electric

Seiberg dual (a possible exception being the case F = N + 1, when the magnetic quarks

can be written as electric baryons). Hence although the physics would be similar to that

of configuration 1, the direct link to strongly coupled 4D Seiberg duals would be lost.

3.3 Two caveats

In the context of AdS/CFT the flavour symmetries of our strongly coupled 4D theory are

weakly gauged, and their RG behaviour (in particular the possibility of Landau poles)

is then important. Let us first consider this from a 4D point of view, by returning to

the electric theory with F = 3
2(N + ν) with N ≫ ν. The SU(N) gauge groups are

inside the conformal window, but the (now gauged) flavour groups, SU(F )L ×SU(F )R, see

n̂f = N/2 flavours and n̂c = F colours. However the flavour groups are anomalous and

must be cancelled. According to the anomaly matching procedure of ’t Hooft (see below),

the flavour anomalies of the electric and magnetic descriptions should both be cancelled by

the same spectator sector. In the present case the coefficients of the SU(F )3L and SU(F )3R
anomalies are −N and N respectively. Thus the spectator sector could be an additional N

fundamentals of SU(F )L and N antifundamentals of SU(F )R. The total number of SU(F )

flavours is then n̂f = N and colours is n̂c = F = 3
2(n̂f + ν). Since n̂f < n̂c one would

conclude that a vacuum does not exist for these theories. However one may add additional

states with masses around ΛIR which are charged only under the flavour symmetry. As
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far as the Seiberg duality is concerned these states are gauge singlets, and clearly their

additional contribution to n̂f can bring the SU(F )L ×SU(F )R flavour symmetry within its

conformal window as well.

What if one instead has a theory where the flavour symmetries are in the IR-free

phase, with effectively n̂f > 3n̂c? (We shall encounter an example later.) In that case the

flavour symmetries would hit a Landau pole in the UV and another Seiberg duality would

be required. From a 4D viewpoint the original SU(N) would in turn become IR-free and

lead to a duality cascade involving the flavour symmetry as well (and most likely a duality

wall would ensue). This can be averted by instead adding massive gauge states around the

scale ΛIR. These come in N = 2 vector multiplets; they can be decomposed as an N = 1

vector and an N = 1 chiral superfield both in the adjoint. Hence a single massive gauge

multiplet contributes 2n̂c to the beta function coefficient and such states can again bring

the flavour groups inside the conformal window.

In short therefore, one expects that even from an entirely 4 dimensional point of view,

additional massive states can tame the behaviour of the flavour symmetries above the scale

ΛIR should we choose to gauge them. In the 5D AdS picture such states correspond to

Kaluza-Klein modes of the bulk gauge fields. The net effect of the coupling to the CFT is

that the RG behaviour of the flavour groups becomes logarithmic [46, 47]. A bound results

on the contribution that the flavoured degrees of freedom in the CFT make to the beta

function in order to avoid Landau poles in the flavour couplings below the UV scale [48]:

bCFT .
2π

α(ΛIR)

1

log (ΛUV/ΛIR)
. (3.21)

When taking the Veneziano limit we necessarily have bCFT ∼ N and hence this translates

into an an upper bound on N which depends on α(ΛIR). For RS1 type scenarios where

the flavour symmetries are identified with SM gauge symmetries, and where ΛIR ∼1TeV

this bound is very strict, N . O(10). In other cases, for example when the bulk gauge

symmetries are not SM gauge symmetries (with the latter being either emergent symmetries

located on the IR brane or having very small values in the IR), or in the “little RS”

scenario [49], the bound can be greatly relaxed.

These bounds are generally equivalent to a lower bound on the curvature of any would-

be gravitational dual [48]. Indeed the radius of AdS is typically given by RAdS ∼ ℓsN
δ where

for example δ = 1/4 for AdS5 × S5, so that the bound on N immediately translates into a

bound on RAdS. In the sub-critical construction of ref. [31] which we shall be invoking, we

have δ = 0 and then the curvature is quite large anyway, RAdS ∼
√

6ℓs. This is in line with

the general expectation of ref. [32].

This then is the first caveat about the validity of this framework that one must bear

in mind. The second is related, and concerns the interpretation of the dynamical scales of

the field theory. In particular, the rightmost panel in figure 1 is the 4D field theoretical

situation whose large N limit we are supposed to be approximating. But, in the figure,

both electric and magnetic theories have their Landau poles around the scale ΛIR, and

look to be strongly coupled there: why then are we entitled to place a weakly coupled

theory on the IR brane? The answer can be found in the matching relation for dynamical
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scales in Seiberg duality which still permits the Landau poles of the electric and magnetic

descriptions to be in different places.

To see this, we can return to the 4D theories and “blow up” the running around the

scale ΛIR in order to examine what happens there when we match the two descriptions.

Let us treat the dynamical scales of the electric theory (Λ) and magnetic theory (Λ̄) more

carefully, and temporarily reinstate the coupling h which we have been setting to one above.

We will need the matching relation for Seiberg duality, which is

Λ̄b̄Λb = (−)F−N Λ̂b+b̄ , (3.22)

expressed in a basis where the quarks of both theories are canonically normalised, and

where the magnetic superpotential is written

Wmag =
1

Λ̂
QQ̃qq̃ + mQQQ̃ . (3.23)

In eq. (3.22), b = 3N −F and b̄ = 3n−F are the one-loop beta-function coefficients so that

4π

α(t)
= b(t − tΛ) ,

4π

ᾱ(t)
= b̄(t − tΛ̄) , (3.24)

where t = log E. For an SQCD theory in the free magnetic phase we have b > 0 and

b̄ < 0, so that we get a perturbative overlap of the electric and magnetic descriptions when

Λ̂ > Λ > Λ̄. In the interval between Λ and Λ̄ both descriptions are in principle valid.

The relation is illustrated graphically in figure 4. The scale Λ̂ is unknown, nevertheless as

shown later in section 5.1 (see eq. (5.9)) one can identify

hϕ =
QQ̃

Λ̂

hµ2
ϕ = mQΛ̂ , (3.25)

where ϕ is the canonically normalised meson. On dimensional grounds one expects the

Kähler potential to have terms of the form

K ⊃ QQ̃Q†Q̃†

κ2Λ2
≡ ϕϕ† , (3.26)

where κ is some unknown coefficient. The coupling, h, is related to this coefficient as

h =
Λκ

Λ̂
. (3.27)

Thus in addition to mQ there are three free (or rather unknown) parameters which we can

choose to be h, Λ and Λ̄ (with Λ̂ and κ being determined by eqs. (3.22) and (3.27)).

It is clear from this discussion what must happen near the IR brane when we have

the more complicated situation described above, namely a conformal interval terminated

by quark mass terms that cause the theory to enter the free magnetic phase below their

– 16 –



J
H
E
P
1
2
(
2
0
1
0
)
0
9
1

−tΛ
−t−tΛ̄ −tΛ̂

ᾱ−1

α−1

Figure 4. Representation of the scale matching of eq. (3.22). The parameter t = log(E), so that

the IR is to the right in the diagram. The scale Λ̂ is formally where α = −ᾱ, as indicated by the

extension of the α−1 line below the axis.

mass, ΛIR. In that case the behaviour shown in figure 5 is perfectly acceptable. Above

ΛIR the coupling does not run. Below the scale ΛIR the electric coupling quickly becomes

non perturbative. But the magnetic theory can be made arbitrarily weakly coupled in this

region since Λ̄ is a free parameter, irrespective of how strongly coupled is the electric theory.

3.4 Flow in the Klebanov-Maldacena solution

Klebanov and Maldacena considered the 6d non-critical string action and found an

AdS5× S1 solution in the presence of F space filling D5 and anti-D5 branes and with

Ñ = O(N) units of RR flux. Despite the fact that these solutions are relatively strongly

curved, it is argued that they are a qualitative approximation to the gravitational dual of

SQCD. However for our 5D AdS approximation to be valid it is important that the radius

of S1 is small and constant. This is indeed the case, and actually the more general solutions

of this system can be seen to exhibit some of the features of the flows we see in the gauge

theory. The ansatz for the 6d metric in the string frame is

ds2 = e2fdx2 + dr2 + e2gdθ2 . (3.28)

Thus the radius of curvature of the S1 is RS1 =
√

α′eg. The evolutions of the scalars is

given by

g′ =
Ñ

F
e−g − F

Ñ
eg − Ñ

2
eφ−g
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−tΛ −t−tΛ̄ −tΛIR

ᾱ−1

α−1

Figure 5. As in figure 4 but with the theory entering a conformal phase above the scale ΛIR. Above

this scale the couplings do not run. Below the scale ΛIR the electric coupling quickly becomes non

perturbative. The “IR brane” is represented by the grey strip in the interval between ΛIR and Λ.

The magnetic theory is weakly coupled in this region.

φ′ = −F

Ñ
eg + Ñeφ−g

f ′ =
Ñ

2
eφ−g , (3.29)

and where φ is the dilaton. For constant F , the solutions exhibit two typical kinds of

behaviour. The choice e2g = 2
3

Ñ2

F 2 and Feφ = 2
3 is the AdS5× S1 solution with constant

RS1 . If we perturb away from this solution it is straightforward to see that the theory

will flow to a linear dilaton behaviour in the UV (i.e. as r → ∞). The dilaton behaves as

φ → φ0 − F

Ñ
r with the theory becoming weakly coupled, while for generic starting values

of g we have eg → Ñ
F

(asymptoting as a tanh function), and f → const. This behaviour

is clearly seen in figure 6a where we show g(r) and φ(r). The flat region is an AdS5× S1

“slice”, while the left of the plot (the UV) is the linear dilaton region.

It is interesting to look at the solutions when F is itself a function of r. This is the

gravitational equivalent of integrating out heavy quarks below their mass on the gauge

side: in this case it would correspond to a recombination of the D5/anti-D5 flavour branes

in the bulk. We can mimic this by adjusting F by hand at some value of r. The resulting

behaviour is shown in figure 6b. A change in flavour perturbs the AdS5× S1 solution to

one with a different RS1 curvature and dilaton, with the AdS5 curvature remaining the

same. There is an obvious analogy with figure 1.

3.5 Anomaly matching in RS1

As we have already mentioned the electric and magnetic theories of tables 1 and 2 are

anomalous in the flavour symmetries: for example both the the SU(F )3L and SU(F )3R
anomalies are non-zero. In a purely 4D setting the ‘t Hooft anomaly matching idea asserts
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-r

gH
rL

,Φ
Hr
L

-r

gH
rL

,Φ
Hr
L

Figure 6. Flow in the Klebanov-Maldacena solution. Left: the warping g(r) (dotted) and dilaton

φ(r) (solid) for fixed F . Right: g(r) (dotted) and dilaton φ(r) (solid) for an r-dependent F .

that such flavour anomalies should be the same in both theories; the reasoning is that if

one were to gauge the flavour symmetries one would have to add a spectator sector charged

only under the flavour symmetries in order to cancel these anomalies. However these new

sectors would be blind to the SU(N) gauge group and so insensitive to its behaviour. (By

analogy, the lepton sector of the Standard Model does not change when QCD confines.)

That both electric and magnetic descriptions have the same flavour anomalies is one of the

most powerful tests of Seiberg duality in 4D.

Now however the situation has changed: the flavour symmetries really are gauged in

the bulk. What, therefore, becomes of anomaly matching — is it even consistent with our

picture of AdS as the large N limit of Seiberg duality? (See also [37].) In order to address

this question let us consider what the spectator sector has to be. Because anomalies do not

exist in 5D, the 4D anomalies are associated with contributions localised at the branes [50–

53]. They can be written

√−gAa(x, z) = Aa
UV(x) δ(z − zUV) + Aa

IR(x) δ(z − zIR) , (3.30)

where for i = UV, IR

Aa
i =

ni

24π2
εµνκλ tr

[

T a ∂µ

(

Aν∂κAλ +
1

2
AνAκAλ

)]

. (3.31)

Here the gauge fields can be associated with the 4D zero modes up to an overall nor-

malisation since their bulk profiles are flat. The constants ni receive the following con-

tributions. A left-chiral fundamental fermion localised on the UV (IR) brane contributes

nUV = 1, nIR = 0 (nUV = 0, nIR = 1). The contribution from a massless left-chiral bulk

fermion is nUV = nIR = 1/2. On an S1/(Z2 ×Z ′
2) orbifold heavy modes with parities (+−)

and (−+) can give localised anomalies that are equal and opposite on the branes. The

contribution from a fundamental fermion with parity (+−) is nUV = −nIR = 1/2 and from

a fermion with parity (−+), it is nUV = −nIR = −1/2. Finally there is a contribution from

a 5D bulk Chern-Simons term which also gives equal and opposite gauge anomaly terms

on the branes. In a consistent gauge invariant theory the summed contributions should

vanish on both boundaries.
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Now let us interpret the bulk and brane fields in terms of Seiberg duality and discuss

the roles that they would play in anomaly matching. Fields on the IR brane clearly belong

to the magnetic theory — we shall call this contribution n(mag)
IR . Fields in the bulk have

both a composite and an elementary component — they are therefore present in both

electric and magnetic theories, and moreover they are singlets of both the magnetic gauge

group (because that lives on the IR-brane only) and the electric gauge group. They can

therefore be thought of as part of the spectator sector. They contribute the same anomaly

at each brane:

n(bulk)
UV = n(bulk)

IR =
1

2
n(bulk) ,

where n(bulk) is their total contribution to the 4D anomalies. Finally the Chern-Simons and

possibly heavy mode contributions are

−n(CS)
UV = n(CS)

IR = n(CS) .

As we have said the total contribution must vanish at each boundary. Thus at the IR

boundary we have to satisfy

n(mag) +
1

2
n(bulk) + n(CS) = 0 . (3.32)

The interpretation in terms of ’t Hooft anomaly matching of the 4D field theories is that

a spectator sector added to cancel the anomalies of the magnetic theory would have to-

tal anomaly

n(spec-mag) =
1

2
n(bulk) + n(CS) . (3.33)

On the other hand the UV brane has total anomaly

n(brane)
UV +

1

2
n(bulk) − n(CS) = 0 , (3.34)

where n(brane)
UV are the contributions from whatever degrees of freedom are localised on the

UV brane. In order to cancel anomaly contributions here we require

n(brane)
UV + n(bulk) = n(spec-mag) . (3.35)

But the left hand side of this equation is the total contribution to the flavour anomaly

coming from the elementary degrees of freedom that couple to the CFT. This is nothing

other than the spectator sector as seen by the underlying electric theory, n(spec-elec). Thus

the anomaly matching condition (i.e. n(spec-elec) = n(spec-mag)) is satisfied: the same spectator

sector can serve to cancel anomalies in both the electric and magnetic theories. Note

that the essential features of the bulk physics required for this to work are that a) the

contributions from the bulk modes are the same at each brane and b) the contributions

from the Chern-Simons terms and the heavy modes are equal and opposite.

As an explicit example consider the anomalies when there is a single bulk meson field

Φ. In total this contributes −F to the SU(F )3L anomalies (and the negative to the SU(F )3R
anomaly), with one half appearing at each boundary. The magnetic theory on the IR
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brane has a contribution of N . Hence a would-be spectator sector (including Φ) that could

cancel the anomaly would have to contribute −N . However the Chern-Simons contribution

has to be 1
2F − N at the IR-brane. On the UV brane the net anomaly from Φ and the

Chern-Simons term is N − F = −n so we have to add additional elementary fields here

that contribute n to the SU(F )3L anomaly. From a 4D perspective the total contribution

from the elementary degrees of freedom (i.e. the spectator sector) is then this plus the

contribution from Φ, giving the same −N that we required for the magnetic theory. In

this example the elementary sector could be an additional n fundamentals of SU(F )L and

n antifundamentals of SU(F )R.

4 The MSSM in RS1

We now turn to applications of the proposed “large N” limit of Seiberg duality, the first

being an explicit realisation of the Randall-Sundrum (RS1) idea, that the particles of the

Standard Model arise as composite degrees of freedom on the IR brane of a slice of AdS.

Of course in their original proposal Randall and Sundrum were interested in protecting the

Higgs mass in non-supersymmetric scenarios. Since we are working in Seiberg duality we

will consider the N = 1 supersymmetric MSSM instead. (This model is morally similar to

the super-technicolour models of ref. [54].)

In table 3 we show the MSSM theory. This is the theory that we wish to put on the IR

brane of a slice of AdS. The advantage of our approach is that we can establish the set-up

working mostly in 4D field theory. Following the discussion of the previous sections we

will do this by deriving the MSSM as the magnetic dual of an electric theory. Additional

states will then be integrated into the latter in order to make the electric phase conformal

above some mass scale, and then the “large N” limit will be taken. This last step requires

some particle content in the magnetic theory that can be adjusted — this content is an

arbitrary number of nh Higgs pairs, with nh = 1 corresponding to the usual MSSM. The

gauge group that we will dualize is SU(2)L ≃ Sp(1).

We assume for concreteness that the Higgs fields, being in vector-like pairs, have a

generic range of mass terms, and that the lightest Higgs is the only one that ends up with

a VEV (i.e. this is the one that plays the role of the usual MSSM Higgs). One can envisage

more complicated cases in which the electroweak breaking is distributed amongst the Higgs

pairs. At low scales, the theory runs precisely as the MSSM, with an asymptotically free

SU(3) and a mildly positive beta function for Sp(1): the Sp(1) group sees an effective flavour

number fSp(1) = 7, and the beta function coefficient is given by b̄Sp(m) = 3(m+1)−fSp(m), so

that b̄Sp(1) = −1 as usual. At energy scales above the masses of the additional Higgs fields,

those states can be “integrated in” to the theory and start to contribute to the running

as well. Eventually we have fSp(1) = 6 + nh. The SU(3) running continues unchanged but

the beta function of Sp(1) becomes more negative, eventually reaching b̄Sp(1) = −(1 + nh).

Therefore we can expect the theory to reach a Landau pole at some scale Λ, above which

an electric description takes over.

In order to get to an electric description we use the Seiberg duality for Sp(m) groups;
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the electric gauge group is Sp(M) where

M = fSp(m) − (m + 2) = 3 + nh . (4.1)

The content of the theory is shown in table 4. In this section we will use the convention

that additional Higgs-like states with R-parity Rp = 1 are denoted either with Φ or ϕ, with

a suffix to indicate which SM field they resemble charge-wise.

The R-parity charges in the electric theory allow the following superpotential (we set

all couplings to one and suppress generation indices to avoid clutter):

Welec = ΦELL + ΦDQL + ΦDc QQ + ΦS QQ + ΦσHUHD + µ2
σΦσ . (4.2)

This theory has a number of features that we should comment on. First the charges of

the Higgses, left-handed quarks and left-handed leptons are the opposite of the charges of

their magnetic counterparts. This is because the gauge groups other than Sp(1) are playing

the role of “flavour” in the Seiberg duality, and as usual those charges must be reversed.

Second, note that the right handed fields of the magnetic theory have no counterpart in

the electric theory: in fact those fields are composite bound state “mesons” of the electric

theory. In addition there are some new states charged under SU(3) and U(1)Y . These

can be identified as the composite “mesons” of the magnetic theory (the term “meson” of

course always referring to mesons of the Sp groups):

ΦE ↔ ll

ΦD ↔ lq

ΦDc ↔ q[iqj]

ΦS ↔ q{iqj}

Φσ ↔ huhd . (4.3)

The trilinear terms in eq. (4.2) are simply the superpotential terms associated with that

identification (c.f. eq. (2.7)). Finally the linear singlet term in eq. (4.2) corresponds to the

Higgs mass terms of the magnetic theory: the masses are ∼ µ2
σ/Λ where Λ is the Landau

pole scale of the magnetic theory, hence we require that

µσ < Λ . (4.4)

It is instructive to confirm that the electric theory we have just described does indeed

flow to the MSSM (augmented by extra Higgs fields) of table 3. (As we have presented it,

this is in fact nothing other than the test that the dual-of-a-dual gives back the original

theory [2].) Upon performing the Seiberg duality of the electric theory we find the spectrum

of table 5. As we have already said, the block of right-handed MSSM fields are bound state

“mesons” of the electric theory. The identification is

ec
i ↔ LiHD

νc
i ↔ LiHU

dc
i ↔ QiHD

uc
i ↔ QiHU . (4.5)
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SU(3) Sp(1) U(1)Y Rp

qi � � 1
6 −1

li 1 � −1
2 −1

nh × hu 1 � 1
2 1

nh × hd 1 � −1
2 1

ec
i 1 1 1 −1

νc
i 1 1 0 −1

dc
i � 1 1

3 −1

uc
i � 1 −2

3 −1

Table 3. The MSSM spectrum augmented by nh − 1 additional massive Higgs pairs. The index

i = 1 . . . 3 is the usual generation index.

SU(3) Sp(3 + nh) U(1)Y Rp

Qi � � −1
6 −1

Li 1 � 1
2 −1

nh × HU 1 � −1
2 1

nh × HD 1 � 1
2 1

3 × ΦE 1 1 −1 1

6 × ΦDc � 1 1
3 1

3 × ΦS 1 1
3 1

9 × ΦD � 1 −1
3 1

singlets Φσ 1 1 0 1

Table 4. The electric dual theory.

The third block of states are also composite “mesons” of the magnetic theory:

3 × ϕec ↔ LL

6 × ϕd ↔ Q[iQj]

3 × ϕsc ↔ Q{iQj}

9 × ϕdc ↔ QL

singlets ϕσ ↔ HUHD . (4.6)

The superpotential of this theory is

Wmag = Λ(ΦEϕec + ΦDϕdc + ΦDcϕd + ΦSϕsc + Φσϕσ) + µ2
σΦσ

+eclhd + νclhu + dcqhd + ucqhu + ϕσhuhd . (4.7)

The first set of terms are masses of order Λ so these fields can be integrated out, whereupon
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SU(3) Sp(1) U(1)Y Rp

qi � � 1
6 −1

li 1 � −1
2 −1

nh × hu 1 � 1
2 1

nh × hd 1 � −1
2 1

ec
i 1 1 1 −1

νc
i 1 1 0 −1

dc
i � 1 1

3 −1

uc
i � 1 −2

3 −1

3 × ϕec 1 1 1 1

6 × ϕd � 1 −1
3 1

3 × ϕsc ¯ 1 −1
3 1

9 × ϕdc � 1 1
3 1

singlets ϕσ 1 1 0 1

3 × ΦE 1 1 −1 1

6 × ΦDc � 1 1
3 1

3 × ΦS 1 1
3 1

9 × ΦD � 1 −1
3 1

singlets Φσ 1 1 0 1

Table 5. Flowing down from the electric theory. This magnetic theory is arrived at by dualizing

the electric theory of table 4. One finds mass terms in the superpotential for the states in the last

two blocks, and they can be integrated out to arrive at the MSSM spectrum of table 3.

we recover the original spectrum of table 5 and the MSSM superpotential

Wmag =
µ2

σ

Λ
huhd + eclhd + νclhu + dcqhd + ucqhu . (4.8)

The first term gives as required the set of masses for the extra Higgs fields (including one

for the lightest field that would correspond to the usual “µ-term” of the MSSM). The

trilinear terms are the usual set of Yukawa couplings: in Seiberg duality we have the added

bonus that these interactions necessarily arise because the right-handed fields are composite

mesons. Naturally there is then the question of how one could explain the hierarchy that

we observe in these interactions. This is outside the scope of the present work but is surely

an interesting topic for future study.

Having found a candidate electric dual for the MSSM, all that remains is to take the

large M limit and propose a gravitational dual. In this case we first add into the electric

theory the required states to bring it into the conformal window of the Sp group. The free
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magnetic window is given by

M + 2 < fSp(M) ≤
3

2
(M + 1) , (4.9)

and the conformal window by

3

2
(M + 1) < fSp(M) < 3(M + 1) . (4.10)

Initially (i.e. for the theory of table 4) the electric theory has M = nh+3 and fSp(M) = nh+6

which, as expected, places it within the free magnetic range for any value of nh > 0.

Now let us add some additional Higgs states but with masses ΛIR. Below ΛIR these

fields are integrated out and the theory enters the free magnetic phase described above;

thus as discussed in section 2 it is the mass ΛIR which generates the “IR-brane”. We will

add an extra n′
h pairs of Higgses H ′

U and H ′
D so that above ΛIR we have fSp(M) = n′

h+nh+6.

In order to bring the electric theory into the conformal window above ΛIR we can define a

parameter ν such that

n′
h =

1

2
(nh + 3ν) , (4.11)

so that

fSp(M) =
3

2
(M + 1 + ν) . (4.12)

We are then free to take the large M limit. In this case sending nh → ∞ but keeping

ν = O(1) formally gives a parametrically strongly coupled conformal Sp(M). Of course

none of this changes the magnetic theory which remains the MSSM with some extra Higgses.

Finally we should discuss the running of the SU(3) and U(1)Y groups. The electric

theory has a large gauge group Sp(nh + 3). From the point of view of the SU(3) group

this provides a large number of additional flavours. In fact the effective number of flavours

contributing to the SU(3) beta function is

fSU(3) = 3(nh + 11) . (4.13)

Clearly the SU(3) group is in principle now highly IR-free in the large nh limit (and even

when nh = 1). Usually one would expect the theory to exhibit some sort of cascade

behaviour above ΛIR with SU(3) hitting a Landau pole. In fact the situation is the one

outlined in section 3.3. In a conformal phase these beta functions are tamed by additional

massive modes charged only under SU(3) (or U(1)Y ) appearing at the scale Λ. From the

RS point of view these states appear automatically as the low-lying Kaluza-Klein modes

of the bulk gauge and matter fields. As explained, the end result is a logarithmic running

and a bound on the value of M .

Having made this caveat we can now propose the entire gravitational dual of this

theory at large M. The set-up is shown in figure 7. The SU(2)L group is emergent and

so must appear on the IR brane. From the perspective of the strongly coupled theory,

the remaining gauge symmetries are flavour symmetries and have to appear in the bulk.

From section 3, it is clear that all the magnetic “quarks” denoted generically by q (i.e.

q = q, l, hu, hd) and every low energy “matter” meson of the Sp groups with R-parity −1,
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denoted by ϕ− (i.e. ϕ− = ec, νc, dc, uc), also appear on the IR brane. Moreover as in the

field theory WIR ⊃ qϕ−q on the IR-brane gives the required MSSM superpotential terms.

However there is a further modification required in the gravitational dual because there

are bulk fields corresponding to every composite operator of the CFT. Therefore the bulk

contains not only the original Rp = +1 fields as above denoted generically as Φ+,

Φ+ =



































ΦE ↔ ll

ΦD ↔ lq

ΦDc ↔ q[iqj]

ΦS ↔ q{iqj}

Φσ ↔ huhd ,

but also the Rp = −1 bulk fields that did not appear in the field theory, denoted generically

by Φ−:

Φ− =



























E ↔ lhd

ν ↔ lhu

D ↔ qhd

U ↔ qhu .

As we saw in section 3 the two types of meson are distinguished by the fact that the latter

are in configuration 1, with a corresponding set of matter fields (i.e. η− = êc, ν̂c, d̂c, ûc)

coupling to Φ− on the UV brane, whereas the former with no corresponding η+ fields on

the UV brane, are in configuration 2. The superpotentials are then given by

WUV = mηη−Φ− ,

WIR = qϕ−q + qϕ+q − mϕΦ−ϕ− − mϕΦ+ϕ+ , (4.14)

where the trilinear couplings automatically contain all the terms consistent with R-parity

conservation. Recall that as in the field theory all the mesons without a UV counterpart

(i.e. the ϕ+’s) are massive and can be integrated out of the low energy theory, whereas

those with a UV counterpart (i.e. the ϕ−’s) leave a light linear combination of η− and ϕ−
in the low energy theory. Since the wave-function of the Φ− can be warped, the remaining

light states could be mostly ϕ− or mostly η−. Hence the final low energy right-handed

fields, ec′, νc′, dc′, uc′ can naturally have different degrees of compositeness, while everything

charged under SU(2)L must necessarily be entirely composite.

5 General gauge mediation, simplified

5.1 ISS

Our second application is to supersymmetry breaking on the IR brane and its media-

tion. The “large N” limit of Seiberg duality will clearly yield a version of the metastable

supersymmetry breaking mechanism of Intriligator, Seiberg and Shih [3], but in an RS1
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Φ+ Φ− V SU(3)c× U(1)Y

q ≡ left-matter+higgs

ϕ
−
≡ comp. right-matter

ϕ+ ≡ charged heavy states

vSU(2)L

η
−

≡ elem.

right-matter

WUV = mηη
−
Φ−

WIR = qϕ
−
q + qϕ+q

−mϕΦ−ϕ
−
− mϕΦ+ϕ+

Figure 7. The configuration for the MSSM in RS1 that naturally arises by considering Seiberg

duality of SU(2)L ≃ Sp(1). The left-handed matter and Higgs fields are identified as “quarks” of

the Sp(1), while a linear combination of the composite “mesons” and elementary fields form the

light right-handed matter fields.

configuration similar to those discussed in refs. [36, 37]. (A string configuration that corre-

sponds to this case was presented in ref. [55]. This case is morally similar to the metastable

superconformal models of ref. [56].)

The supersymmetry breaking is a feature of the magnetic theory and so one expects it

to appear on the IR-brane. Thus proposals for gauge-mediation that were discussed in the

context of RS1 should also be applicable to our strongly coupled configuration. One partic-

ular application that we would like to revisit is gauge mediation with gaugino masses that

are dominant over scalar ones. In the context of extraordinary gauge mediation [38] this

corresponds to increasing the “effective number of messengers”, and a region of parameter

space that näıvely corresponds to strong coupling. Calculable and explicit models have

long been known in the context of extra dimensional models [20–26, 43]. Interest has been

revived recently in 4D models that can achieve the same kind of screening of scalar mass

contributions in for example refs. [26–29]. Here we shall be using the large N limit of the

simple perturbative gauge mediation model of ref. [35] in order to achieve the same effect.

First let us look at the ISS supersymmetry breaking sector and briefly review the

model for comparison. ref. [3] worked in the free-magnetic phase 3
2N ≥ F ≥ N + 1 and

noted that the classical superpotential Wmag in eq. (2.16) is of the O’Raifeartaigh type.

Supersymmetry breaking occurs because of the so-called rank condition:

Fϕi
j

= q̃jqi − µ2
ϕ δj

i = 0 , (5.1)

can only be satisfied for a rank-n submatrix of the Fϕ where i, j are flavour indices. The

height of the potential at the metastable minimum is then given by

V+(0) = N |µ4
ϕ| , (5.2)

where for ease of notation we are again setting the coupling h = 1. The supersymmetric

minima in the magnetic theory are located by allowing ϕ to develop a vev. The q and q̃

fields acquire masses of 〈ϕ〉 and can be integrated out, whereupon one recovers a pure SU(n)
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Yang-Mills theory with a nonperturbative contribution to the superpotential of the form

W (dyn)
IR = n

(

detϕ

Λ̄F−3n

) 1
n

. (5.3)

This leads to N nonperturbatively generated SUSY preserving minima at

〈ϕj
i 〉 = µϕ ǫ−3+2 F

N δj
i , (5.4)

where ǫ = µϕ/Λ̄, in accord with the Witten index theorem. The minima can be made to

appear far from the origin if ǫ is small and 3N > 2F , the condition for the magnetic theory

to be IR-free. The positions of the minima are bounded by the Landau pole such that they

are always in the region of validity of the macroscopic theory.
Now for the holographic version. Following the discussion in section 2, we work down

from the electric theory. In contrast to ref. [3] we begin in the conformal window but with
the global flavour symmetry explicitly broken by relevant mass-terms as

SU(F )L × SU(F )R × U(1)B × U(1)R → SU(F1)D × SU(F2)D × SU(F3)D × U(1)B , (5.5)

where F1 + F2 + F3 = F , and where we choose

3
2N < F ≤ 3N

N + 1 ≤ (F2 + F3) ≤ 3
2N . (5.6)

We also add to the electric spectrum a superfield Φ that transforms as an adjoint under

the SU(F2)D symmetry. The superpotential of the electric theory is (we set all Yukawa

couplings to one)

Welec = mQQQ̃ + QΦQ̃ − µ2
ΦΦ , (5.7)

where

mQ =









m11F1×F1 0 0

0 m21F2×F2 0

0 0 m31F3×F3









,

and where m1 ≫ m2 ≫ m3. Initially the model behaves according to the discussion of

section 2; that is at the scale

ΛIR =
(

m1ΛUV
∆ϕ−2

)
1

∆ϕ−1 , (5.8)

we can integrate out the F1 heavy quark states. The theory can be dualized to a weakly

coupled and IR-free magnetic phase with F2 + F3 flavours and a dynamical scale Λ ∼ ΛIR.

However the magnetic superpotential is

Wmag = qϕq̃ − µ2
ϕϕ + ΛϕΦ − µ2

ΦΦ , (5.9)

where

µ2
ϕ =

(

µ2
21F2×F2 0F2×F3

0F3×F2 µ2
31F3×F3

)

.
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The flavour contractions are self-evident: for example the contraction ϕΦ can involve only

those elements of ϕ in the F2 ×F2 upper block. As this is a mass term, the F2 ×F2 blocks

of flavour adjoints may be integrated out supersymmetrically near the Landau pole scale

Λ to leave a superpotential

W ′
mag =

µ2
Φ

Λ
q2q̃2 + q3ϕ33q̃3 + q3ϕ32q̃2 + q2ϕ23q̃3 − µ2

3ϕ33 , (5.10)

where we now indicate the flavour blocks with indices. Finally, assuming that the mass

for q2 and q̃2 dominates, i.e. that µ2
Φ/Λ ≫ µϕ, we may integrate out these fields as well,

to find

W ′′
mag = q3ϕ33q̃3 − µ2

3ϕ33. (5.11)

Since no gauge symmetry has been broken so far, this is an SU(F2 + F3 − N)

O’Raighfeartaigh theory that has F3 flavours of quarks. We may now take a large N limit.

In this case, remaining inside the correct ranges of flavours means that F1 + F2 + F3 > 3
2N

and F2 + F3 ≥ N + 1 also become large. However there is no such constraint on either F3

or n = F2 + F3 −N which may both be of order unity. Hence the IR theory can be weakly

coupled. Note that this type of SUSY breaking could be inserted directly into the Higgs

sector of the MSSM model in the previous subsection.

5.2 General gauge mediation

The metastable SUSY breaking of the previous section lends itself to an RS1 implemen-

tation of the “simplified” gauge mediation scenario discussed in ref. [35]. The result is

a holographic version of general gauge mediation [57]. To briefly recap, the 4D picture

is as follows. Suppose that the supersymmetry breaking sector (i.e. the SU(F3) sector

above) contains no direct connection with the Standard Model gauge groups, GSM , but

that there is an additional pair of messenger fields f, f̃ that are charged under GSM . The

authors of ref. [35] argued that one can expect higher order operators to be generated in

the underlying electric theory of the form

Welec ⊃
(QQ̃)(f f̃)

MX
+ mff f̃ , (5.12)

where mf is the messenger mass and MX is the scale of underlying physics, namely the

mass scale of new modes in the theory that are exchanged between the messengers and

the strongly coupled ISS sector. For convenience we are now (and will henceforth) drop

the 33 indices that identify this as the SU(F3) block. In the low energy theory the SUSY

breaking and mediation part of the superpotential becomes

Wmag ⊃
Λ

MX
ϕff̃ + mff f̃ + qϕq̃ − µ2

ϕϕ . (5.13)

As noted in ref. [35], the first term is precisely the usual spurion interaction of ordinary

gauge mediation. However the effective coupling Λ
MX

can be very small since generally one

expects Λ ≪ MX . The advantage of this suppression is that the R-symmetry breaking

in the theory is under strict control. Of course the terms in eq. (5.13) do explicitly break
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R-symmetry since ϕ has R-charge 2 (it appears with a linear term in the rest of the

superpotential), however it is still approximately conserved because of the smallness of the

coupling to the spurion. An equivalent statement (as prescribed by ref. [58]) is that a new

global SUSY preserving minimum is introduced but that it is so far away in field space

that it could never disrupt the metastability of the SUSY breaking ISS sector. Indeed it

is clear that the linear ϕ term can be set to zero if 〈f f̃〉 = −µ2
ϕMX/Λ, but this can be

much larger than the scale Λ, making it irrelevant to physics in the magnetic theory. The

phenomenology of these models is similar to that of conventional gauge mediation (with

the main difference being that the NLSP decay length is parametrically longer [59]).

The AdS equivalent of this type of mediation is as shown in figure 8. We begin with the

ISS configuration of the previous section but add the elementary messenger fields on the UV

brane. As we have seen an additional η meson is required on the UV brane and this will in

general mix with the ϕ meson through its couplings to the bulk field Φ. We will implicitly

assume — in order to justify having bulk gauge bosons — that some of the fields in the

non-supersymmetry breaking sector (i.e. the SU(F1) × SU(F2) sector above) also couple

to the Standard Model gauge groups, but that only the messenger field couples to η. In

addition we require R-symmetry to be broken in the UV theory which is represented by an

explicit mass term for the messengers. The brane superpotentials are then by comparison

with eqs. (5.12) and (5.13) given by

WUV = ηf f̃ + mff f̃ + mηη(Φ − Φ0)

WIR = qϕq̃ − mϕϕΦ . (5.14)

As we saw this is the theory that remains after all of the confining physics described above

has taken place, so that q, q̃ and ϕ represent the fields in the low energy F3 × F3 flavour

block. Without the Φ0 term the anomaly-free R-symmetry of table 2 is unbroken. As

required by comparison to the ISS model, the Φ0 term induces an expectation value for

Φ on the boundary (equivalent to mQ in the underlying strongly coupled QCD theory

by the bulk/boundary correspondence) because of the |∂WUV/∂η|2 term in the effective

potential. (Note that, as we shall see in a moment, we cannot just set ∂WUV/∂η = 0

because supersymmetry is broken.) This leaves a residual but anomalous R-symmetry.

The mass term for the gauginos then breaks the R-symmetry entirely on the UV boundary

as in ref. [35], but the IR brane retains it. In this way the gravitational dual description

makes it geometrically explicit that the approximate R-symmetry of the IR theory is an

emergent phenomenon.3

Before presenting precise details, let us describe how we expect the suppressed me-

diation of ref. [35] to operate in the gravitational dual description. As we have said, the

boundary terms break supersymmetry and enforce a linear combination of the 4D η and

ϕ fields to zero. To see how this happens it is useful to temporarily disregard the effect

of warping and consider the 4D theory whose superpotential is simply the sum of WIR

and WUV:

W = ηf f̃ + mff f̃ + mηη(Φ − Φ0) + qϕq̃ − mϕϕΦ . (5.15)

3See ref. [60] for an alternative example of this phenomenon.
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One can use the residual flavour symmetry to diagonalise the problem, and it is then

easy to see that n diagonal components of all the F -terms can be set to zero by choosing

Φii = Φ0 = q̃iqi/mϕ for i = 1 . . . n. The remaining N contributions to the potential are

V ⊃
F
∑

i=n+1

m2
η(Φii − Φ0)

2 + m2
ϕΦ2

ii , (5.16)

where to avoid confusion we are using the same symbol for the superfield and its scalar

component. Defining a mixing angle

tan ϑ =
mϕ

mη
, (5.17)

the metastable ISS minimum occurs at

Φii = cos2 ϑ Φ0 ; V+(0) = NΦ2
0m

2
η sin2 ϑ , (5.18)

with the effective F -terms for ϕ and η being given by

µ2
ϕ = sin ϑ cos ϑ mηΦ0

µ2
η = sin2 ϑ mηΦ0 , (5.19)

and with the remaining light meson field being given by

ϕ′ = cos ϑ ϕ + sin ϑ η . (5.20)

The low energy theory is then

Wmag = sin ϑ ϕ′f f̃ + mff f̃ + qϕ′q̃ + µ2
ϕϕ′ . (5.21)

Thus this purely perturbative 4D model is, at energies below mη, essentially the configura-

tion of [35] and the gauge mediation is standard. In particular note that the field Φ never

contributes to supersymmetry breaking.

Now consider the strongly coupled theory modelled by a slice of AdS, depicted in fig-

ure 8. The supersymmetry breaking sector is similar to the model above, but altered in

two ways. First, the field Φ is now a bulk field and generally has a profile that warps down

the effective µ2
ϕ. Second, the superpotentials themselves get an overall warp factor, which

changes the relative sizes of the supersymmetry breaking contributions to the potential on

the two branes. Nevertheless, some coarse aspects of the 4D model above carry over. For

example the bulk meson Φ never contributes to the supersymmetry breaking, which is in-

stead shared between the two branes. In the limit of large mη the supersymmetry breaking

will all be on the IR brane. Moreover the interesting 5D dynamics all happens above the

scale ΛIR. Below this scale the theory behaves like the 4D one described above, modulo

the warping of parameters. Therefore, if we choose a low messenger mass mf < ΛIR, then

the mediation sector is oblivous to the strong coupling and the low energy phenomenol-

ogy closely resembles that of ref. [35]. The gaugino mass comes from the usual one-loop

diagram and one finds the usual 4D result:

Mλ = sinϑ
α

4π

tr(Fϕ′)

mf
≈ sin ϑ

α

4π

Nµ2
ϕ

mf
, (5.22)
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Φ, VF
ϕ, q, q̃, vnη, f, f̃

WUV = ηf f̃

+mff f̃

+mηη(Φ − Φ0)

WIR = qϕq̃ − mϕΦϕ

Figure 8. The configuration for “simplified” gauge mediation (c.f. ref. [35]). Into the proposed

gravitational dual of SQCD we add messenger fields f, f̃ on the UV brane that interact with the bulk

meson. The latter provides the heavy (KK) modes that generate the effective messenger/spurion

coupling in the low energy theory.

in the limit of small ϑ. The scalar masses, being given by two loop diagrams, are similar

in magnitude and, as in the 4D theory above, the phenomenology is similar to that of

ordinary gauge mediation.

However new 5D effects will occur if we choose mf ≫ ΛIR. The scale mf then defines

a resolution scale much smaller than the typical length scale corresponding to the Kaluza-

Klein separation. The loop integrals that contribute to supersymmetry breaking are then

effected by the localization of supersymmetry breaking on the IR brane. The net result

is a suppression of the scalar masses with respect to the gaugino masses which are still

given by eq. (5.22). Naively one expects the suppression factor to be given by at least an

extra loop factor for the scalars while the gauginos are from the AdS viewpoint a tree-level

effect. This is nothing other than an AdS form of gaugino mediation very similar to that

in ref. [23]. It is remarkable that via the AdS/CFT correspondence, the simple model of

ref. [35] becomes a straightforward implementation of general gauge mediation [57]! (Note

that the scalar mass-squareds in ref. [23] indeed conform to the general sum-rules derived

in ref. [57].)

After this long heuristic discussion let us now present some precise details. The scales

involved are ΛIR ∼ z−1
IR for the IR physics and ΛUV ∼ k = z−1

UV for the UV physics, with

the cuts-off being related as ΛIR = ΛUVzUV/zIR. First the effect of the warping on the

supersymmetry breaking: using the bulk solution for the massless modes given in eq. (3.5),

and taking into account the warp factors in the canonical normalisation of ϕ, the low energy

potential written in terms of ΦUV = Φ(zUV) is

V ⊃
F
∑

i=n+1

m2
η(ΦUV − Φ0)

2 +

(

zIR

zUV

)−(1+2c)

m2
ϕΦ2

UV , (5.23)

and thus our mixing angle is

tan ϑ =

(

zUV

zIR

)
1
2
+c mϕ

mη
≈
(

zUV

zIR

)
1
2
+c

, (5.24)
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where the last relation is for the choice of mϕ ≈ mη. (The power of (1
2 + c) reflects the

relation between the canonically normalised fields in eq. (3.16).) Thus, when c > −1
2

tan ϑ ≪ 1 and the supersymmetry breaking is pushed to the IR brane. Note that if on

the other hand c < −1
2 then tan ϑ ≫ 1. The supersymmetry breaking then naively looks

to be completely localized on the UV brane, with V+ = NΦ2
0m

2
η, but in this case there is

no metastability. Instead the non-perturbative terms discussed in ref. [3] introduce global

supersymmetric minima at a distance less than ΛIR away in field space, and so the Euclidean

tunnelling action is of order SE ∼ 2π2ϕ4
min/V+ ≪ 1: the supersymmetry breaking has to

be an IR effect.

We can model the supersymmetry breaking gaugino masses with local F terms on the

branes. The effective operators are given by

W ⊃ aUV

g2
5Λ

2
UV

ηW αWαδ(z − zUV) +
aIR

g2
5Λ

2
IR

ϕW αWαδ(z − zIR) , (5.25)

where aUV, aIR are constants. To determine the value of the coefficients we need the 5D

propagators which can be found in refs. [23, 41, 42, 61]. The bulk gaugino propagator has

a denominator of the form

J̃1(ipzIR)H̃1(ipzUV) − H̃1(ipzIR)J̃1(ipzUV) , (5.26)

where H1 are Hankel functions of the first kind of order 1, the tilde modification is of

the form

J̃α(w) = (−r + s/2 − 1)Jα(w) + wJα−1, (5.27)

where s = 1 for gauginos, and where the values of r for UV and IR branes respectively are

rUV = −1

2
+ ipzUV

aUVFη

4Λ2
UV

; rIR = −1

2
+ ipzUV

aIRFϕ

4Λ2
IR

. (5.28)

It is straightforward to extract the pole of the propagator by taking the pzIR, pzUV → 0

limit, which gives a gaugino mass of

Mλ =
z−1

UVΛ−2
UV

4 log (zIR/zUV)
(aIRFϕ − aUVFη) . (5.29)

As usual, the effect of the warping is to scale down the masses in the operator on the

IR-brane by a factor ΛIR/ΛUV. Also note that no gaugino mass results if aUVFη is equal to

aIRFϕ: in the F → ∞ limit this would correspond to having Dirichlet boundary conditions

on both branes.

For simplicity we shall henceforth neglect the small non-zero F -term that is induced

on the UV brane, setting aUV = 0 and focus on the IR-brane contribution. By comparing

with eq. (5.22) and using the relation g2
5k = g2 log(zIR/zUV), we determine aIR, to find that

the gaugino mass is equivalent to an IR-brane localized term of the form

W ⊃ sin ϑ
z2

IR

z2
UV

ϕ

4π2mf
W αWαδ(z − zIR) . (5.30)
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Let us now compute the scalar mass-squared terms to see the suppression.4 In order to do

this we have to evaluate the one-loop contributions with bulk gauge fields in the loop. The

mass-squared terms are given by

m2
i = 4g2C(Ri)Π , (5.31)

where C(Ri) is the quadratic Casimir of the representation Ri and

Π =
1

k
log(zIR/zUV)

∫

d4p

(2π)4
[GV (p, zUV) − GF (p, zUV)] . (5.32)

The gaugino, GF and gauge boson, GV propagators (which can be found in ref. [23]) are

evaluated at zUV, since the external squark fields are assumed to be localized on the UV

brane. For the gauge bosons we obtain the explicit expression

GV (p, zUV) =
1

ip

J1(ipzUV)Y0(ipzIR) − J0(ipzIR)Y1(ipzUV)

J0(ipzUV)Y0(ipzIR) − J0(ipzIR)Y0(ipzUV)
, (5.33)

while the gaugino propagator is given by

GF =
1

ip

J1(ipzUV)Y0(ipzIR) − J0(ipzIR)Y1(ipzUV) − ξ(J1(ipzUV)Y1(ipzIR) − J1(ipzIR)Y1(ipzUV))

J0(ipzUV)Y0(ipzIR) − J0(ipzIR)Y0(ipzUV) − ξ(J0(ipzUV)Y1(ipzIR) − J1(ipzIR)Y0(ipzUV))
,

(5.34)

where ξ =
aIRFϕ

4Λ2
IR

zUV
zIR

parametrizes the amount of supersymmetry breaking on the IR brane.

Note that in the ξ → ∞ (Fϕ → ∞) limit the gaugino wave-function is completely repelled

from the IR-brane by the non-zero F -term, and one recovers the Green function for twisted

boundary conditions, with Neumann (Dirichlet) boundary conditions on the UV (IR)-

brane [23], i.e.

GF
Fϕ → ∞

=
1

ip

J1(ipzIR)Y1(ipzUV) − J1(ipzUV)Y1(ipzIR)

J1(ipzIR)Y0(ipzUV) − J0(ipzUV)Y1(ipzIR)
. (5.35)

The gaugino mass in this case is pure Dirac, and there are no divergences in Π. We refer

to this as the “gaugino mediation limit”.5 However we are interested in the case when Fϕ

is finite. In order to treat this more general case we use the following simplified expression

for the propagator difference:

GV (p, zUV) − GF (p, zUV) =
i

p3

ξ

zIRzUV

1

Γ0

1

(Γ0 + iξΓ1)
, (5.36)

where

Γ0 = I0(pzUV)K0(pzIR) − I0(pzIR)K0(pzUV) ,

Γ1 = I0(pzUV)K1(pzIR) + I1(pzIR)K0(pzUV) . (5.37)

4Note that much of this discussion is valid for RS1 models with F -terms on the boundary in general.
5In order to calculate these well-known results using current correlators, one would have to use the

extended formalism of ref. [62] which includes Dirac masses. The purely Majorana piece gets exponentially

suppressed as in [63].

– 34 –



J
H
E
P
1
2
(
2
0
1
0
)
0
9
1

The I,K functions are modified Bessel functions and therefore Γ0,1 are real valued. Us-

ing (5.36) we obtain (with x = pzIR).

iΠ = −z−2
IR

8π2
log (zIR/zUV)

∫ ∞

0
dx

1

Γ0

iξ

(Γ0 + iξΓ1)
. (5.38)

The i from the Wick rotation of p0 → ip0 in d4p has been placed on the l.h.s. of (5.38). In

the limit ξ → ∞ one obtains (using log(zIR/zUV) = 34.54)

iΠ = −z−2
IR

8π2
log(zIR/zUV)

∫ ∞

0
dx

1

Γ0Γ1
≈ (0.036)2z−2

IR . (5.39)

This corresponds to the real part of iΠ and reproduces the twisted boundary condition

result in ref. [23]. Therefore the scalar mass-squared for finite ξ can be obtained by con-

sidering the real part of iΠ. Using (5.38) we find

ℜ[iΠ] = −z−2
IR

8π2
log (zIR/zUV)

∫ ∞

0
dx

Γ1

Γ0

ξ2

(Γ2
0 + ξ2Γ2

1)
. (5.40)

In the limit ξ → 0 we find that ℜ[iΠ] ∝ ξ2 as one would expect in normal gauge mediation.

The ratio of the scalar masses to the gaugino masses can be parameterised by γ such that

Π =
γ

8π2
M2

λ . (5.41)

(Numerically the twisted boundary condition result is equivalent to γ = 1.73.) In the ξ → 0

limit we have

γ ≃ −(log(zIR/zUV))3
∫ ∞

0
dx

Γ1

Γ3
0

. (5.42)

A part of this ratio comes from the RG running contribution of the Majorana gaugino

masses to the scalar mass-squareds. Therefore, as one would expect, the integral (5.42)

is logarithmically divergent when Mλ = 0. In order to find the remaining piece we can

compare γ with the complete field theory expression for the contribution to the mass-

squareds from each gauge factor (neglecting the running of the gauge couplings) [64]:

Πa(µ) ≈ Πa(Q) + log

(

Q

µ

)

M2
λa

8π2
. (5.43)

The logarithmic piece in the integral for γ exactly reproduces this RG running. Subtracting

this piece, we find that in the large log (zIR/zUV) limit the remaining finite contribution to

Π(Q) is given by

lim
zIR/zUV → ∞

[γ̄] =
1

2
log(zIR/zUV) . (5.44)

Numerically, this approximation is accurate to a few percent for log (zIR/zUV) = 34.54

say. At first sight the apparent increase of γ̄ with log (zIR/zUV) is a bit puzzling since

heuristically one expects the supersymmetry mediation to scalars to tend to a constant,
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but actually this relation just reflects the “messenger content” in the bulk. Indeed this

limit together with the AdS/CFT relation g2
5k = 8π2/bCFT (c.f. eq. (3.21)) gives

m2
i =

∑

a

2Ca

bCFT

M2
λa

. (5.45)

This is the AdS/CFT equivalent to the perturbative extra-ordinary gauge mediation re-

lation where the contribution to the beta function coefficient is given by the number of

messengers Nmess, and where we have M2
λ ∼ m2

i Nmess [38]. Here in the Veneziano limit the

CFT contribution to the beta functions coefficients is instead bCFT ∼ N .

This result was in the ξ → 0 limit, which we will refer to as the “extra-ordinary gauge

mediation limit”. However one can determine γ and extract γ̄ numerically for the general

case as we increase ξ. In order to do this we first note that when ξ 6= 0 the integral is

no longer divergent. This is to be expected since the gaugino is massive and therefore the

logarithmic divergence has a natural IR cut-off about the gaugino mass scale. Indeed as

x → 0 the integrand in eq. (5.40) can be approximated by

log(zIR/zUV)
Γ1

Γ0

ξ2

(Γ2
0 + ξ2Γ2

1)
→ 1

x

ξ2

(

log2(zIR/zUV) + ξ2

x2

) , (5.46)

and this function is peaked at x ≡ pzIR = ξ/ log(zIR/zUV), that is precisely where p = Mλ.

The integrand and its approximation are shown in figure 9. The main feature of the “extra-

ordinary gauge mediation limit” is that in this region the gaugino pole is well separated,

so that one can define a “messenger scale”, Qmess, below which the contribution to the

mass-squared integral is well described by the log(Q/µ) piece in eq. (5.43). In order to

find γ̄ for arbitrary ξ therefore, we can divide the integral into two regions, with γ̄ being

identified with the contributions from above the scale Qmess where the two curves diverge.

We can use the local minimum to define this point, whose location is well approximated

by the value of the gaugino mass in the gaugino mediation (large ξ) limit (i.e. it is at

0.24 TeV for the values chosen above). This procedure ceases to be meaningful for large

values of ξ because the pole “melts” into the main contribution. At this point extraordinary

gauge mediation behaviour goes over to gaugino mediation behaviour as in ref. [23]. The

numerically evaluated γ and γ̄ (in the extra-ordinary GM region) are shown in figure 10.

As one final remark, it is worth highlighting the restricted form of general gauge

mediation that one derives from this model. It is by now well known that the most general

configuration for gauge mediation allows six independent parameters (assuming no CP

violating phases in the gaugino sector), three for the gaugino mass terms, and three for the

squarks [57]. There are five squark masses in total so this requires two sum rules,

m2
Q̃
− 2m2

Ũ
+ m2

D̃
− m2

L̃
+ m2

Ẽ
= 0

2m2
Q̃
− m2

Ũ
− m2

D̃
− 2m2

L̃
+ m2

Ẽ
= 0 . (5.47)

The squark masses derived here and in ref. [23] (which are realisations of general gauge

mediation in AdS) of course have to satisfy these rules. However there are only four free
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0.0 0.5 1.0 1.5 2.0

Figure 9. Contribution to the scalar mass-squareds with momentum in units of ΛIR: the full

Green’s function (upper curve) and the gaugino pole approximation (lower curve).

ξ

Extra-Ordinary GM

Gaugino mediation

γ
γ̄

0.001 0.01 0.1 1 10 100 1000
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30

Figure 10. The parameter γ = 8π2Π/M2
λ, varying continuously from extraordinary gauge me-

diation to gaugino mediation behaviour as the relative supersymmetry breaking on the IR brane,

ξ, increases. The γ̄ line, representing the mass-squared value “at the messenger scale”, is the

contribution with the gaugino RG term removed, relevant in the small ξ limit.

parameters for the models discussed here, not six. Assuming that the gaugino masses are

driven by couplings to different F -terms or possibly different couplings to the same F -term,

then they can be free parameters, however the mediation to the sfermions is only a function

of the AdS geometry and the suppression is the same for all the Standard Model gauge

factors. Therefore the pattern of soft-supersymmetry breaking can be written in terms of
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the gluino mass M3 and three sfermion mass-squared parameters Πi=1...3 as follows:

M1 =

√

Π1

Π2
M2 =

√

Π1

Π3
M3

m2
Q̃

=
4

3
α3Π3 +

3

4
α2Π2 +

1

60
α1Π1

m2
Ũ

=
4

3
α3Π3 +

4

15
α1Π1

m2
D̃

=
4

3
α3Π3 +

1

15
α1Π1

m2
L̃

=
3

4
α2Π2 +

3

20
α1Π1

m2
Ẽ

=
3

5
α1Π1 . (5.48)

6 Conclusions

We have examined Randall-Sundrum (RS1) like configurations in strongly coupled 4D

N = 1 supersymmetric field theory. By taking a large N (Veneziano) limit and combining

it with a Seiberg duality, we showed how one can construct a model in which a conformal

phase with relevant operators (specifically quark mass terms) flows to a weakly coupled

free-magnetic phase. The bulk of these theories is approximated by the construction of

Klebanov and Maldacena [31]. The magnetic theory, including its gauge fields, lives entirely

on the IR brane as emergent degrees of freedom.

We showed how this construction can be used to derive an RS1 version of the MSSM

in which the SU(2)L gauge group is emergent. The SU(3)c and hypercharge gauge bosons

are bulk degrees of freedom and correspond to part of the “flavour” symmetries of the

Seiberg duality. The right-handed fields are predicted to be entirely elementary, whereas

the left-handed fields are predicted to be a mixture of elementary and composite degrees

of freedom. (The latter are identified as the mesons of the Seiberg duality.)

We also showed how gaugino mediation can be implemented, by beginning with the

Murayama-Nomura model of gauge mediation in ref. [35] and taking its large N limit in the

specified manner. The metastable supersymmetry breaking of ref. [3], being an emergent

phenomenon, appears on the IR brane, while the matter fields and messenger fields (being

elementary degrees of freedom in the model) are on the UV brane. The Standard Model

gauge fields are bulk degrees of freedom and therefore gauginos get masses at leading order,

whereas the sfermion mass-squareds, which have to be transmitted through the bulk, are

suppressed. The result is an AdS version of extra-dimensional gauge mediation. By varying

parameters, the pattern of supersymmetry breaking can be taken from extra-ordinary gauge

mediation (i.e. equivalent to a large number of messengers that are integrated out below

a typical mass scale) to AdS gaugino mediation similar to that of ref. [23]. Due to the

universal nature of the mediation, the model corresponds to general gauge mediation (with

additional Dirac gaugino masses) but with only four free parameters.
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