84 research outputs found

    Different ability of multidrug-resistant and-sensitive counterpart cells to release and capture extracellular vesicles

    Get PDF
    Cancer multidrug resistance (MDR) is one of the main challenges for cancer treatment efficacy. MDR is a phenomenon by which tumor cells become resistant to several unrelated drugs. Some studies have previously described the important role of extracellular vesicles (EVs) in the dissemination of a MDR phenotype. EVs’ cargo may include different players of MDR, such as microRNAS and drug-efflux pumps, which may be transferred from donor MDR cells to recipient drug-sensitive counterparts. The present work aimed to: (i) compare the ability of drug-sensitive and their MDR counterpart cells to release and capture EVs and (ii) study and relate those differences with possible distinct fate of the endocytic pathway in these counterpart cells. Our results showed that MDR cells released more EVs than their drug-sensitive counterparts and also that the drug-sensitive cells captured more EVs than their MDR counterparts. This difference in the release and capture of EVs may be associated with differences in the endocytic pathway between drug-sensitive and MDR cells. Importantly, manipulation of the recycling pathway influenced the response of drug-sensitive cells to doxorubicin treatment.This article is a result of the project NORTE-01-0145-FEDER-000029, supported by Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). We thank Spanish MINECO (SAF2015-66312 to JMF) and for the REDIEX (Spanish Excellence Network in Exosomes) and the Severo Ochoa Excellence Accreditation (SEV-2016-0644). The authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD grant of DS (SFRH/BD/98054/2013). Cristina P.R. Xavier is supported by FCT and Fundo Social Europeu (FSE), through the post-doc grant SFRH/BPD/122871/2016. The authors also acknowledge the European COST Action-European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD, BM1202) for short-term mission fellowship (ECOST-STSM-BM1202-150317-083396) and Grupo Español de investigacion en Vesiculas Extracelulares for GEIVEX mobility fellowship which allowed the work of DS in CICbioGUNE

    Thermal behaviour of the different parts of almond shells as waste biomass

    Get PDF
    The main aim of this study is to investigate the thermal behaviour of the different parts of almond shells produced in an almond industry as a waste biomass. For this purpose, several experiments have been conducted under laboratory conditions. After removing the mature almonds, the waste raw materials subject of this study were treated with distilled water (10 min) and separated in several parts. Taking into account their physical characteristics, they were: (a) complete shells: exocarp, mesocarp and endocarp without grinding (Sample C); (b) ground samples of complete shells, sieved under 0.2 mm (Sample M); (c) hard layers of the endocarp (Sample E); (d) internal layers of the endocarp (Sample I); and (e) mature drupes (Sample P) or skin, being constituted by the flexible part of green colour (fresh form) or yellow (after drying). The thermal behaviour of all these sample materials has been investigated using a laboratory furnace, with determination of ash contents and mass loss by progressive heating (120 min of holding time). Elemental and DTA-TG/DTG analyses of selected sample materials have been carried out. Although a complete study can be very complex, a first approach has been performed in this investigation. Results on thermal decomposition of this biomass waste have been presented to emphasize the main differences between sample materials of almond shells. These results have demonstrated the influence of several parameters, such as the particle size, and previous treatments in the thermal behaviour of the different parts of the almond shells, as showed in this investigation. Structural analysis of almond shells allowed to determine lignin, cellulose and hemicellulose. From the lignin content, it has been predicted the higher heating value (18.24 MJkg(-1)) of this waste as by-product of industrial interest. Other linear correlations to calculate this parameter have been applied with similar results in all these samples

    Synaptic Dysbindin-1 Reductions in Schizophrenia Occur in an Isoform-Specific Manner Indicating Their Subsynaptic Location

    Get PDF
    Background: An increasing number of studies report associations between variation in DTNBP1, a top candidate gene in schizophrenia, and both the clinical symptoms of the disorder and its cognitive deficits. DTNBP1 encodes dysbindin-1, reduced levels of which have been found in synaptic fields of schizophrenia cases. This study determined whether such synaptic reductions are isoform-specific. Methodology/Principal Findings: Using Western blotting of tissue fractions, we first determined the synaptic localization of the three major dysbindin-1 isoforms (A, B, and C). All three were concentrated in synaptosomes of multiple brain areas, including auditory association cortices in the posterior half of the superior temporal gyrus (pSTG) and the hippocampal formation (HF). Tests on the subsynaptic tissue fractions revealed that each isoform is predominantly, if not exclusively, associated with synaptic vesicles (dysbindin-1B) or with postsynaptic densities (dysbindin-1A and -1C). Using Western blotting on pSTG (n = 15) and HF (n = 15) synaptosomal fractions from schizophrenia cases and their matched controls, we discovered that synaptic dysbindin-1 is reduced in an isoform-specific manner in schizophrenia without changes in levels of synaptophysin or PSD-95. In pSTG, about 92% of the schizophrenia cases displayed synaptic dysbindin-1A reductions averaging 48% (p = 0.0007) without alterations in other dysbindin-1 isoforms. In the HF, by contrast, schizophrenia cases displayed normal levels of synaptic dysbindin-1A, but 67% showed synaptic reductions in dysbindin-1B averaging 33% (p = 0.0256), while 80% showed synaptic reductions in dysbindin-1C averaging 35% (p = 0.0171). Conclusions/Significance: Given the distinctive subsynaptic localization of dysbindin-1A, -1B, and -1C across brain regions, the observed pSTG reductions in dysbindin-1A are postsynaptic and may promote dendritic spine loss with consequent disruption of auditory information processing, while the noted HF reductions in dysbindin-1B and -1C are both presynaptic and postsynaptic and could promote deficits in spatial working memory

    Birth Weight and Adult IQ, but Not Anxious-Depressive Psychopathology, Are Associated with Cortical Surface Area: A Study in Twins

    Get PDF
    BACKGROUND: Previous research suggests that low birth weight (BW) induces reduced brain cortical surface area (SA) which would persist until at least early adulthood. Moreover, low BW has been linked to psychiatric disorders such as depression and psychological distress, and to altered neurocognitive profiles. AIMS: We present novel findings obtained by analysing high-resolution structural MRI scans of 48 twins; specifically, we aimed: i) to test the BW-SA association in a middle-aged adult sample; and ii) to assess whether either depression/anxiety disorders or intellectual quotient (IQ) influence the BW-SA link, using a monozygotic (MZ) twin design to separate environmental and genetic effects. RESULTS: Both lower BW and decreased IQ were associated with smaller total and regional cortical SA in adulthood. Within a twin pair, lower BW was related to smaller total cortical and regional SA. In contrast, MZ twin differences in SA were not related to differences in either IQ or depression/anxiety disorders. CONCLUSION: The present study supports findings indicating that i) BW has a long-lasting effect on cortical SA, where some familial and environmental influences alter both foetal growth and brain morphology; ii) uniquely environmental factors affecting BW also alter SA; iii) higher IQ correlates with larger SA; and iv) these effects are not modified by internalizing psychopathology.This work was supported by the Spanish SAF2008-05674, European Twins Study Network on Schizophrenia Research Training Network (grant number EUTwinsS; MRTN-CT-2006-035987), the Catalan 2014SGR1636 and the PIM2010-ERN- 00642 in frame of ERA-NET NEURON. A. CĂłrdova- Palomera was funded by The National Council for Science and Technology (CONACyT, Mexico). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    MIGHTEE-H i: possible interactions with the galaxy NGC 895

    Get PDF
    The transformation and evolution of a galaxy is strongly influenced by interactions with its environment. Neutral hydrogen (H i) is an excellent way to trace these interactions. Here, we present H i observations of the spiral galaxy NGC 895, which was previously thought to be isolated. High-sensitivity H i observations from the MeerKAT large survey project MIGHTEE reveal possible interaction features, such as extended spiral arms and the two newly discovered H i companions, that drive us to change the narrative that it is an isolated galaxy. We combine these observations with deep optical images from the Hyper Suprime Camera to show an absence of tidal debris between NGC 895 and its companions. We do find an excess of light in the outer parts of the companion galaxy MGTH_J022138.1-052631, which could be an indication of external perturbation and thus possible sign of interactions. Our analysis shows that NGC 895 is an actively star-forming galaxy with a SFR of 1.75 ± 0.09[M⊙/yr], a value typical for high-stellar mass galaxies on the star-forming main sequence. It is reasonable to state that different mechanisms may have contributed to the observed features in NGC 895, and this emphasizes the need to revisit the target with more detailed observations. Our work shows the high potential and synergy of using state-of-the-art data in both H i and optical to reveal a more complete picture of galaxy environments

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    • 

    corecore