31 research outputs found

    The psychological well-being of Norwegian adolescents exposed in utero to radiation from the Chernobyl accident

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>On 26 April 1986, the Chernobyl nuclear power plant suffered an accident. Several areas of central Norway were heavily affected by far field radioactive fallout. The present study focuses on the psychological well-being of adolescents who were exposed to this radiation as fetuses.</p> <p>Methods</p> <p>The adolescents (n = 53) and their mothers reported their perceptions of the adolescents' current psychological health as measured by the Youth Self Report and Child Behaviour Checklist.</p> <p>Results</p> <p>In spite of previous reports of subtle cognitive deficits in these exposed adolescents, there were few self-reported problems and fewer problems reported by the mothers. This contrasts with findings of studies of children from the former Soviet Union exposed in utero, in which objective measures are inconsistent, and self-reports, especially by mothers, express concern for adolescents' cognitive functioning and psychological well-being.</p> <p>Conclusion</p> <p>In the current paper, we explore possible explanations for this discrepancy and suggest that protective factors in Norway, in addition to perceived physical and psychological distance from the disaster, made the mothers less vulnerable to Chernobyl-related anxiety, thus preventing a negative effect on the psychological health of both mother and child.</p

    Plantar fascia ultrasound images characterization and classification using support vector machine

    Get PDF
    The examination of plantar fascia (PF) ultrasound (US) images is subjective and based on the visual perceptions and manual biometric measurements carried out by medical experts. US images feature extraction, characterization and classification have been widely introduced for improving the accuracy of medical assessment, reducing its subjective nature and the time required by medical experts for PF pathology diagnosis. In this paper, we develop an automated supervised classification approach using the Support Vector Machine (Linear and Kernel) to distinguishes between symptomatic and asymptomatic PF cases. Such an approach will facilitate the characterization and the classification of the PF area for the identification of patients with inferior heel pain at risk of plantar fasciitis. Six feature sets were extracted from the segmented PF region. Additionally, features normalization, features ranking and selection analysis using an unsupervised infinity selection method were introduced for the characterization and the classification of symptomatic and asymptomatic PF subjects. The performance of the classifiers was assessed using confusion matrix attributes and some derived performance measures including recall, specificity, balanced accuracy, precision, F-score and Matthew’s correlation coefficient. Using the best selected features sets, Linear SVM and Kernel SVM achieved an F-Score of 97.06 and 98.05 respectively

    Cognitive and psychological science insights to improve climate change data visualization

    Get PDF
    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics

    Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like CdvB

    Get PDF
    International audienceBACKGROUND: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula. METHODOLOGY/PRINCIPAL FINDINGS: Using sucrose density gradient ultracentrifugation and negative staining electron microscopy, we evidenced for the first time that CdvA forms polymers in association with DNA, similar to known bacterial DNA partitioning proteins. We also observed that, in contrast to full-lengh CdvB that was purified as a monodisperse protein, the C-terminally deleted CdvB construct forms filamentous polymers, a phenomenon previously observed with eukaryotic ESCRT-III proteins. Based on size exclusion chromatography data combined with detection by multi-angle laser light scattering analysis, we demonstrated that CdvC assembles, in a nucleotide-independent way, as homopolymers resembling dodecamers and endowed with ATPase activity in vitro. The interactions between these putative cell division partners were further explored. Thus, besides confirming the previous observations that CdvB interacts with both CdvA and CdvC, our data demonstrate that CdvA/CdvB and CdvC/CdvB interactions are not mutually exclusive. CONCLUSIONS/SIGNIFICANCE: Our data reinforce the concept that Cdv proteins are closely related to the eukaryotic ESCRT-III counterparts and suggest that the organization of the ESCRT-III machinery at the Crenarchaeal cell division septum is organized by CdvA an ancient cytoskeleton protein that might help to coordinate genome segregation

    Roadmap on dynamics of molecules and clusters in the gas phase

    Get PDF
    This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science

    Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling

    No full text
    corecore