390 research outputs found

    Understanding the Random Displacement Model: From Ground-State Properties to Localization

    Full text link
    We give a detailed survey of results obtained in the most recent half decade which led to a deeper understanding of the random displacement model, a model of a random Schr\"odinger operator which describes the quantum mechanics of an electron in a structurally disordered medium. These results started by identifying configurations which characterize minimal energy, then led to Lifshitz tail bounds on the integrated density of states as well as a Wegner estimate near the spectral minimum, which ultimately resulted in a proof of spectral and dynamical localization at low energy for the multi-dimensional random displacement model.Comment: 31 pages, 7 figures, final version, to appear in Proceedings of "Spectral Days 2010", Santiago, Chile, September 20-24, 201

    Differential microRNA expression in experimental cerebral and noncerebral malaria

    Full text link
    MicroRNAs (miRNAs) are posttranscriptional regulatory molecules that have been implicated in the regulation of immune responses, but their role in the immune response to Plasmodium infection is unknown. We studied the expression of selected miRNAs following infection of CBA mice with Plasmodium berghei ANKA (PbA), which causes cerebral malaria (CM), or Plasmodium berghei K173 (PbK), which causes severe malaria but without cerebral complications, termed non-CM. The differential expression profiles of selected miRNAs (let-7i, miR-27a, miR-150, miR-126, miR-210, and miR-155) were analyzed in mouse brain and heart tissue by quantitative reverse transcription-PCR (qRT-PCR). We identified three miRNAs that were differentially expressed in the brain of PbA-infected CBA mice: let7i, miR-27a, and miR-150. In contrast, no miRNA changes were detected in the heart, an organ with no known pathology during acute malaria. To investigate the involvement of let-7i, miR-27a, and miR-150 in CM-resistant mice, we assessed the expression levels in gamma interferon knockout (IFN-γ-/-) mice on a C57BL/6 genetic background. The expression of let-7i, miR-27a, and miR-150 was unchanged in both wild-type (WT) and IFN-γ-/- mice following infection. Overexpression of these three miRNAs during PbA, but not PbK, infection in WT mice may be critical for the triggering of the neurological syndrome via regulation of their potential downstream targets. Our data suggest that in the CBA mouse at least, miRNA may have a regulatory role in the pathogenesis of severe malaria. © 2011, American Society for Microbiology

    Molecular hydrogen beyond the optical edge of an isolated spiral galaxy

    Full text link
    We know little about the outermost portions of galaxies because there is little light coming from them. We do know that in many cases atomic hydrogen (HI) extends well beyond the optical radius \cite{Casertano91}. In the centers of galaxies, however, molecular hydrogen (H2) usually dominates by a large factor, raising the question of whether H2 is abundant also in the outer regions but hitherto unseen.Here we report the detection of emission from carbon monoxide (CO), the most abundant tracer of H2, beyond the optical radius of the nearby galaxy NGC 4414. The molecular clouds probably formed in the regions of relatively high HI column density and in the absence of spiral density waves. The relative strength of the lines from the two lowest rotational levels indicates that both the temperature and density of the H2 are quite low compared to conditions closer to the center. The inferred surface density of the molecular material continues the monotonic decrease from the inner regions. We conclude that while molecular clouds can form in the outer region of this galaxy, there is little mass associated with them.Comment: 3 Nature page

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Rotation Curves of Spiral Galaxies

    Get PDF
    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.Comment: 40 pages, 6 gif figures; Ann. Rev. Astron. Astrophys. Vol. 39, p.137, 200

    Self-gravity as an explanation of the fractal structure of the interstellar medium

    Get PDF
    The gas clouds of the interstellar medium have a fractal structure, the origin of which has generally been thought to lie in turbulence. The energy of turbulence could come from galactic rotation at large-scale, then cascade down to be dissipated on small-scales by viscosity; it has been suggested that such turbulence helps to prevent massive molecular clouds from collapsing in response to their own gravity. Here we show that, on the contrary, self-gravity itself may be the dominant factor in making clouds fractal. We develop a field-theory approach to the structure of clouds, assuming them to be isothermal, and with only gravitational interactions; we find that the observed fractal dimension of the clouds arise naturally from this approach. Although this result does not imply that turbulence is not important, it does demonstrate that the fractal structure can be understood without it.Comment: Latex file, four pages and two colour figures in .cps files. To appear in Nature, 5 September 199

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy

    Get PDF
    Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue

    Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces Opening of Intercellular Junctions

    Get PDF
    Cerebral malaria, a major cause of death during malaria infection, is characterised by the sequestration of infected red blood cells (IRBC) in brain microvessels. Most of the molecules implicated in the adhesion of IRBC on endothelial cells (EC) are already described; however, the structure of the IRBC/EC junction and the impact of this adhesion on the EC are poorly understood. We analysed this interaction using human brain microvascular EC monolayers co-cultured with IRBC. Our study demonstrates the transfer of material from the IRBC to the brain EC plasma membrane in a trogocytosis-like process, followed by a TNF-enhanced IRBC engulfing process. Upon IRBC/EC binding, parasite antigens are transferred to early endosomes in the EC, in a cytoskeleton-dependent process. This is associated with the opening of the intercellular junctions. The transfer of IRBC antigens can thus transform EC into a target for the immune response and contribute to the profound EC alterations, including peri-vascular oedema, associated with cerebral malaria
    • …
    corecore