We give a detailed survey of results obtained in the most recent half decade
which led to a deeper understanding of the random displacement model, a model
of a random Schr\"odinger operator which describes the quantum mechanics of an
electron in a structurally disordered medium. These results started by
identifying configurations which characterize minimal energy, then led to
Lifshitz tail bounds on the integrated density of states as well as a Wegner
estimate near the spectral minimum, which ultimately resulted in a proof of
spectral and dynamical localization at low energy for the multi-dimensional
random displacement model.Comment: 31 pages, 7 figures, final version, to appear in Proceedings of
"Spectral Days 2010", Santiago, Chile, September 20-24, 201