40 research outputs found

    Probabilistic analysis of degradation of façade claddings using Markov chain models

    Get PDF
    In this study, the time-dependent stochastic degradation of three types of claddings is analysed. For this purpose, 203 fac¸ades with stone claddings(directly adhered to the substrate), 195 with adhered ceramic claddings and 220 with painted surfaces were analysed. All the fac¸ades are located in Lisbon, Portugal. Their degradation condition was assessed through an extensive field work. Based on the data gathered, Markov chains are used to predict the degradation of claddings and to understand, in some detail, how the characteristics of the claddings contribute to the overall degradation. The results show that the distance from the sea and exposure to damp are significant to the degradation of all types of cladding. The type and size of stone plates also influence the degradation of stone claddings. The exposure to wind-rain action has a high impact on the degradation of ceramic claddings. The models proposed provide useful information on the probability of failure of the claddings; these results are fundamental in the context of insurance policies and in the definition of building maintenance plans

    Sex, Ecology and the Brain: Evolutionary Correlates of Brain Structure Volumes in Tanganyikan Cichlids

    Get PDF
    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes

    Positive association of the hepatic lipase gene polymorphism c.514C > T with estrogen replacement therapy response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatic lipase (HL), an enzyme present in the hepatic sinusoids, is responsible for the lipolysis of lipoproteins. Human HL contains four polymorphic sites: G-250A, T-710C, A-763G, and C-514T single-nucleotide polymorphism (SNPs). The last polymorphism is the focus of the current study. The genotypes associated with the C-514T polymorphism are CC (normal homozygous - W), CT (heterozygous - H), and TT (minor-allele homozygous - M). HL activity is significantly impaired in individuals of the TT and CT genotypes. A total of 58 post-menopausal women were studied. The subjects were hysterectomized women receiving hormone replacement therapy consisting of 0.625 mg of conjugated equine estrogen once a day. The inclusion criteria were menopause of up to three years and normal blood tests, radiographs, cervical-vaginal cytology, and densitometry. DNA was extracted from the buccal and blood cells of all 58 patients using a commercially available kit (GFX<sup>® </sup>- Amersham-Pharmacia, USA).</p> <p>Results</p> <p>Statistically significant reductions in triglycerides (t = 2.16; n = 58; p = 0.03) but not in total cholesterol (t = 0.14; n = 58; p = 0.89) were found after treatment. This group of good responders were carriers of the T allele; the CT and TT genotypes were present significantly more frequently than in the group of non-responders (p = 0.02 or p = 0.07, respectively). However, no significant difference in HDL-C (t = 0.94; n = 58; p = 0.35) or LDL-C (t = -0.83; n = 58; p = 0.41) was found in these patients.</p> <p>Conclusions</p> <p>The variation in lipid profile associated with the C-514T polymorphism is significant, and the T allele is associated with the best response to ERT.</p

    Defect-induced bandgap narrowing in low-k dielectrics

    Get PDF
    © 2015 AIP Publishing LLC. In this work, core-level X-ray photoelectron spectroscopy was utilized to determine the surface bandgap for various porous and non-porous low-k a-SiCOH dielectrics before and after ion sputtering. By examining the onset of inelastic energy loss in O 1s core-level spectra, the gap narrowing was universally found in Ar+ion sputtered low-k dielectrics. The reduction of the bandgap ranges from 1.3 to 2.2eV depending on the film composition. We show that the bandgap narrowing in these low-k dielectrics is caused by development of the valence-band tail as evidenced by the presence of additional electronic states above the valence-band maximum. Electron-spin-resonance measurements were made on a-SiCOH films to gain atomic insight into the nature of the sputtering-induced defects and reveal formation of carbon-related defects as the most probable origin of the gap states.status: publishe

    Impact of VUV photons on SiO2 and organosilicate low-k dielectrics: General behavior, practical applications, and atomic models

    No full text
    © 2019 Author(s). This paper presents an in-depth overview of the application and impact of UV/VUV light in advanced interconnect technology. UV light application in BEOL historically was mainly motivated by the need to remove organic porogen and generate porosity in organosilicate (OSG) low-k films. Porosity lowered the film's dielectric constant, k, which enables one to reduce the interconnect wiring capacitance contribution to the RC signal delay in integrated circuits. The UV-based low-k film curing (λ > 200 nm) proved superior to thermal annealing and electron beam curing. UV and VUV light also play a significant role in plasma-induced damage to pSiCOH. VUV light with λ < 190-200 nm is able to break Si-CH 3 bonds and to make low-k materials hydrophilic. The following moisture adsorption degrades the low-k properties and reliability. This fact motivated research into the mechanisms of UV/VUV photon interactions in pSiCOH films and in other materials used in BEOL nanofabrication. Today, the mechanisms of UV/VUV photon interactions with pSiCOH and other films used in interconnect fabrication are fairly well understood after nearly two decades of research. This understanding has allowed engineers to both control the damaging effects of photons and utilize the UV light for material engineering and nanofabrication processes. Some UV-based technological solutions, such as low-k curing and UV-induced stress engineering, have already been widely adopted for high volume manufacturing. Nevertheless, the challenges in nanoscaling technology may promote more widespread adoption of photon-assisted processing. We hope that fundamental insights and prospected applications described in this article will help the reader to find the optimal way in this wide and rapidly developing technology area.status: publishe

    The efficacy of two different lipid-based amphotericin B in neonatal Candida septicemia

    No full text
    WOS: 000233436800014PubMed ID: 16354223Background: Fungal sepsis is becoming more frequent in neonatal intensive care units (NICU) and has a high mortality rate due to the invasive nature of the disease and to the insufficiency of low doses and high incidence of renal problems with effective doses of amphotericin B. New generation lipid formulated amphotericin B preparations may be more efficient because they are less toxic to be applied in target doses. However, there is limited experience in neonates and preterm infants. Methods: The charts of 917 patients admitted to NICU between 2001 and 2003 were reviewed and the data of 21 patients with systemic Candida infection, requiring different amphotericin B therapy, were analyzed. Results: Infants with fungal septicemia were treated with amphotericin B lipid complex (Abelcet (R))(n = 10) and liposomal amphotericin B (AmBisome (R))(n = 9) for a mean duration of 21 and 18 days. The mean gestational age of the patients was 30.9 +/- 4.2 weeks and mean birth weight was 1536 +/- 714 g. Two patients in the Abelcet (R) group and one patient in the AmBisome (R) group died during therapy. Fungal eradication was achieved in 16 surviving infants and mean eradication time was 8.1 +/- 2.6 days and mean duration of therapy was 19.2 +/- 4.1 days. Mortality rates related to treatment failure were similar being 20% in the Abelcet (R) group and 11% in the AmBisome (R) group. No patient showed severe side-effects from the antifungal therapy; the incidence of minimal side-effects were similar in both groups and they were elevated serum transaminase levels in six patients, increased serum creatinine in one patient and hypokalemia in one patient. Conclusion: Both preparations have the same benefits for the treatment of neonatal fungal sepsis and they can be used safely in neonates including very low birth weight infants. However, the clinician must keep in mind the cost of treatment

    WDR5 supports an N-myc transcriptional complex that drives a protumorigenic gene expression signature in neuroblastoma

    Full text link
    MYCN gene amplification in neuroblastoma drives a gene expression program that correlates strongly with aggressive disease. Mechanistically, trimethylation of histone H3 lysine 4 (H3K4) at target gene promoters is a strict prerequisite for this transcriptional program to be enacted. WDR5 is a histone H3K4 presenter that has been found to have an essential role in H3K4 trimethylation. For this reason, in this study, we investigated the relationship between WDR5-mediated H3K4 trimethylation and N-Myc transcriptional programs in neuroblastoma cells. N-Myc upregulated WDR5 expression in neuroblastoma cells. Gene expression analysis revealed that WDR5 target genes included those with MYC-binding elements at promoters such as MDM2. We showed that WDR5 could form a protein complex at the MDM2 promoter with N-Myc, but not p53, leading to histone H3K4 trimethylation and activation of MDM2 transcription. RNAi-mediated attenuation of WDR5 upregulated expression of wild-type but not mutant p53, an effect associated with growth inhibition and apoptosis. Similarly, a small-molecule antagonist of WDR5 reduced N-Myc/WDR5 complex formation, N-Myc target gene expression, and cell growth in neuroblastoma cells. In MYCN-transgenic mice, WDR5 was overexpressed in precancerous ganglion and neuroblastoma cells compared with normal ganglion cells. Clinically, elevated levels of WDR5 in neuroblastoma specimens were an independent predictor of poor overall survival. Overall, our results identify WDR5 as a key cofactor for N-Myc-regulated transcriptional activation and tumorigenesis and as a novel therapeutic target for MYCN-amplified neuroblastomas
    corecore