1,335 research outputs found

    Nonuniform compensation of current density distribution in polymer electrolyte fuel cells by local heating

    Get PDF
    A homogeneous current density distribution improves a fuel cell’s performance and prolongs its service life. Effective cell structure designs and uniform compression during assembly could support this goal by ensuring a homogeneous reaction rate across the activation area. Due to the coupling of hydro-electro-thermal relationships, for instance, the concentration of reactants along the flow field decreases continuously as the electrochemical reaction proceeds, and the subsequent accumulation of liquid water leads to a low current density at the outlet. The effect of operating conditions, such as local heating, on the current density distribution requires further investigation. This paper studies the impact of local heating on polymer electrolyte fuel cell (PEFC) performance and analyses the effects on voltage by mapping the current density distribution across the active area. Local heating was supplied to the three regions of the electrode, namely, fuel inlet, central and outlet regions, with the latter exhibiting the best performance (in the activation, Ohmic and mass transport controlled region, the output voltage increases compared to no local heating corresponding to 1.28%, 2.17% and 2.46%, respectively). Here, we show that in all local heating cases, outlet heating can compensate for the lowest current density region with the largest current density increased by 91.10 mA cm−2 and achieves a more homogeneous current distribution, while inlet heating aggravates heterogeneity. This study provides practical guidance for optimal thermal management system development whereby the cooling channel design should be locally optimised for more uniform distributions of current density and temperature compared to heating the cell uniformly

    Nonuniform compensation of current density distribution in polymer electrolyte fuel cells by local heating

    Get PDF
    A homogeneous current density distribution improves a fuel cell's performance and prolongs its service life. Effective cell structure designs and uniform compression during assembly could support this goal by ensuring a homogeneous reaction rate across the activation area. Due to the coupling of hydro-electro-thermal relationships, for instance, the concentration of reactants along the flow field decreases continuously as the electrochemical reaction proceeds, and the subsequent accumulation of liquid water leads to a low current density at the outlet. The effect of operating conditions, such as local heating, on the current density distribution requires further investigation. This paper studies the impact of local heating on polymer electrolyte fuel cell (PEFC) performance and analyses the effects on voltage by mapping the current density distribution across the active area. Local heating was supplied to the three regions of the electrode, namely, fuel inlet, central and outlet regions, with the latter exhibiting the best performance (in the activation, Ohmic and mass transport controlled region, the output voltage increases compared to no local heating corresponding to 1.28%, 2.17% and 2.46%, respectively). Here, we show that in all local heating cases, outlet heating can compensate for the lowest current density region with the largest current density increased by 91.10 mA cm−2 and achieves a more homogeneous current distribution, while inlet heating aggravates heterogeneity. This study provides practical guidance for optimal thermal management system development whereby the cooling channel design should be locally optimised for more uniform distributions of current density and temperature compared to heating the cell uniformly

    Stop stereotyping.

    Get PDF
    Restraining the expression of stereotypes is a necessary requirement for harmonious living, yet surprisingly little is known about the efficacy of this process. Accordingly, in two experiments, here we used a stop-signal task to establish how effectively stereotype-related responses can be inhibited. In Experiment 1, following the presentation of gender-typed occupational contexts, participants reported the sex of target faces (i.e., Go trials) unless an occasional auditory tone indicated they should withhold their response (i.e., Stop trials). In Experiment 2, following the presentation of male and female faces, participants made either stereotypic or counter-stereotypic judgments, unless a stop signal was presented. Regardless of whether stereotyping was probed indirectly (Experiment 1) or directly (Experiment 2), a consistent pattern of results was observed; inhibition was faster for stereotypic compared with counter-stereotypic responses. These findings demonstrate that stopping stereotyping may be less challenging than has widely been assumed

    Effects of an easy-to-implement water management strategy on performance and degradation of polymer electrolyte fuel cells

    Get PDF
    Intermittent switching between wet and dry reactant gases during operation in a polymer electrolyte fuel cell (PEFC) can improve performance stability, alleviating the effects of flooding by controlling the water content within the system. However, lifetime durability may be affected due to membrane electrode assembly (MEA) boundary delamination and membrane damage. Two relative humidity (RH) control strategies were investigated, using electrochemical performance and MEA degradation as critical indicators. It was found that intermittent switching between wet and dry gases does not accelerate fuel cell degradation if the duration of the dry gas period is set reasonably (dry gases stops before the voltage reaches the apex of the hump). Additionally, current and temperature distribution mapping was utilised to capture the dynamic response between these transitional stages. The switching of dry gases first makes the current density distribution homogeneous, and the maximum current density is reduced subsequently. Then, the current density near the inlet keeps decreasing. Intermittent switching between wet and dry reactant gases is easy to implement and overcomes limitations in mass transfer at medium and high current densities

    The complete mitochondrial genome of the foodborne parasitic pathogen Cyclospora cayetanensis

    Get PDF
    Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes

    Linear-T resistivity and change in Fermi surface at the pseudogap critical point of a high-Tc superconductor

    Full text link
    A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the zero-temperature onset of that phase, namely at the critical doping p* where the pseudogap temperature T* goes to zero, accessed by investigating a material in which superconductivity can be fully suppressed by a steady magnetic field. Just below p*, the normal-state resistivity and Hall coefficient of La1.6-xNd0.4SrxCuO4 are found to rise simultaneously as the temperature drops below T*, revealing a change in the Fermi surface with a large associated drop in conductivity. At p*, the resistivity shows a linear temperature dependence as T goes to zero, a typical signature of a quantum critical point. These findings impose new constraints on the mechanisms responsible for inelastic scattering and Fermi surface transformation in theories of the pseudogap phase.Comment: 24 pages, 6 figures. Published in Nature Physics. Online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1109.htm

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    Get PDF
    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets has yet to be determined, since their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range from depleted to extended hydrogen-dominated atmospheres. Here, we report a space-based measurement of the combined transmission spectrum of the two inner planets made possible by a favorable alignment resulting in their simultaneous transits on 04 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at 10-σ\sigma levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas envelope as they lie in a region of parameter space where high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum---from a cloud-free water vapour atmosphere to a Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24 proposal
    corecore