165 research outputs found

    Microbial community composition in sediments resists perturbation by nutrient enrichment

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 5 (2011): 1540–1548, doi:10.1038/ismej.2011.22.Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply, despite demonstrable and diverse nutrient–induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.Funding for this research came from NSF(DEB-0717155 to JEH, DBI-0400819 to JLB). Support for the sequencing facility came from NIH and NSF (NIH/NIEHS-P50-ES012742-01 and NSF/OCE 0430724-J Stegeman PI to HGM and MLS, and WM Keck Foundation to MLS). Salary support provided from Princeton University Council on Science and Technology to JLB. Support for development of the functional gene microarray provided by NSF/OCE99-081482 to BBW. The Plum Island fertilization experiment was funded by NSF (DEB 0213767 and DEB 0816963)

    From father to son: transgenerational effect of tetracycline on sperm viability

    Get PDF
    The broad-spectrum antibiotic tetracycline is used in animal production, antimicrobial therapy, and for curing arthropods infected with bacterial endosymbionts such as Wolbachia. Tetracycline inhibits mitochondrial translation, and recent evidence indicates that male reproductive traits may be particularly sensitive to this antibiotic. Here, we report the first multi-generation investigation of tetracycline's effects on ejaculate traits. In a study of the pseudoscorpion, Cordylochernes scorpioides, in which siblings were randomly assigned to control and tetracycline treatments across replicate full-sibling families, tetracycline did not affect body size in either sex, female reproduction or sperm number. However, tetracycline-treated males exhibited significantly reduced sperm viability compared to control males, and transmitted this toxic effect of tetracycline on sperm to their untreated sons but not to their F2 grandsons. These results are consistent with tetracycline-induced epigenetic changes in the male germline, and suggest the need for further investigation of transgenerational effects of tetracycline on male reproductive function

    SUBMIT: Systemic therapy with or without up front surgery of the primary tumor in breast cancer patients with distant metastases at initial presentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Five percent of all patients with breast cancer have distant metastatic disease at initial presentation. Because metastatic breast cancer is considered to be an incurable disease, it is generally treated with a palliative intent. Recent non-randomized studies have demonstrated that (complete) resection of the primary tumor is associated with a significant improvement of the survival of patients with primary metastatic breast cancer. However, other studies have suggested that the claimed survival benefit by surgery may be caused by selection bias. Therefore, a randomized controlled trial will be performed to assess whether breast surgery in patients with primary distant metastatic breast cancer will improve the prognosis.</p> <p>Design</p> <p>Randomization will take place after the diagnosis of primary distant metastatic breast cancer. Patients will either be randomized to up front surgery of the breast tumor followed by systemic therapy or to systemic therapy, followed by delayed local treatment of the breast tumor if clinically indicated.</p> <p>Patients with primary distant metastatic breast cancer, with no prior treatment of the breast cancer, who are 18 years or older and fit enough to undergo surgery and systemic therapy are eligible. Important exclusion criteria are: prior invasive breast cancer, surgical treatment or radiotherapy of this breast tumor before randomization, irresectable T4 tumor and synchronous bilateral breast cancer. The primary endpoint is 2-year survival. Quality of life and local tumor control are among the secondary endpoints.</p> <p>Based on the results of prior research it was calculated that 258 patients are needed in each treatment arm, assuming a power of 80%. Total accrual time is expected to take 60 months. An interim analysis will be performed to assess any clinically significant safety concerns and to determine whether there is evidence that up front surgery is clinically or statistically inferior to systemic therapy with respect to the primary endpoint.</p> <p>Discussion</p> <p>The SUBMIT study is a randomized controlled trial that will provide evidence on whether or not surgery of the primary tumor in breast cancer patients with metastatic disease at initial presentation results in an improved survival.</p> <p>Trial registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01392586">NCT01392586</a>.</p

    Genomic Resources for Sea Lice: Analysis of ESTs and Mitochondrial Genomes

    Get PDF
    Sea lice are common parasites of both farmed and wild salmon. Salmon farming constitutes an important economic market in North America, South America, and Northern Europe. Infections with sea lice can result in significant production losses. A compilation of genomic information on different genera of sea lice is an important resource for understanding their biology as well as for the study of population genetics and control strategies. We report on over 150,000 expressed sequence tags (ESTs) from five different species (Pacific Lepeophtheirus salmonis (49,672 new ESTs in addition to 14,994 previously reported ESTs), Atlantic L. salmonis (57,349 ESTs), Caligus clemensi (14,821 ESTs), Caligus rogercresseyi (32,135 ESTs), and Lernaeocera branchialis (16,441 ESTs)). For each species, ESTs were assembled into complete or partial genes and annotated by comparisons to known proteins in public databases. In addition, whole mitochondrial (mt) genome sequences of C. clemensi (13,440 bp) and C. rogercresseyi (13,468 bp) were determined and compared to L. salmonis. Both nuclear and mtDNA genes show very high levels of sequence divergence between these ectoparastic copepods suggesting that the different species of sea lice have been in existence for 37–113 million years and that parasitic association with salmonids is also quite ancient. Our ESTs and mtDNA data provide a novel resource for the study of sea louse biology, population genetics, and control strategies. This genomic information provides the material basis for the development of a 38K sea louse microarray that can be used in conjunction with our existing 44K salmon microarray to study host–parasite interactions at the molecular level. This report represents the largest genomic resource for any copepod species to date

    Tumour dormancy in breast cancer: an update

    Get PDF
    Delayed recurrences, common in breast cancer, are well explained by the concept of tumour dormancy. Numerous publications describe clinical times to disease recurrence or death, using mathematical approaches to infer mechanisms responsible for delayed recurrences. However, most of the clinical literature discussing tumour dormancy uses data from over a half century ago and much has since changed. This review explores how current breast cancer treatment could change our understanding of the biology of breast cancer tumour dormancy, and summarizes relevant experimental models to date. Current knowledge gaps are highlighted and potential areas of future research are identified

    Mapping autism risk loci using genetic linkage and chromosomal rearrangements.

    Get PDF
    International audienceAutism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs

    Antimetastatic activity of a cyclooxygenase-2 inhibitor

    Get PDF
    Cyclooxygenase-2 (COX-2) expression is increased in breast cancer and surgery has been shown to increase the growth of metastatic tumours. We investigated the effect of selective COX-2 inhibition on the growth of metastases in either an experimental metastasis model or following excision of a murine primary breast tumour. 50,000 4T1 mammary carcinoma cells were injected into the mammary fat pad of female BALB/c mice. When the mean TD reached 8+/-0.4 mm, tumours were excised and the mice were randomised into two groups (n=12 per group) to receive daily intraperitoneal injections of the selective COX-2 inhibitor, SC-236 or drug vehicle for 14 days. Alternatively, experimental metastases were established by tail-vein injection of 50,000 4T1 cells. Mice received either the selective COX-2 inhibitor, SC-236 or drug vehicle for 14 days (n=12 per group). SC-236 treatment significantly reduced tumour burden, the number and size of spontaneous metastases following primary tumour excision. SC-236 treatment also reduced tumour burden, the number and size of experimental metastases. Immunohistochemical staining demonstrated that COX-2 inhibition reduced microvessel density and increased apoptosis within both spontaneous and experimental metastases. These data clearly demonstrate that the selective COX-2 inhibitor, SC-236, has potent antimetastatic activity against both spontaneous metastases arising following primary tumour excision and experimental metastases.</p

    The Biology and Economics of Coral Growth

    Get PDF
    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms—the zooxanthellate scleractinian corals—is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review paper provides a comprehensive overview of factors that can influence the growth of zooxanthellate scleractinian corals, with particular emphasis on interactions between these factors. Furthermore, the kinetic principles underlying coral growth are discussed. The reviewed information is put into an economic perspective by making an estimation of the costs of coral aquaculture

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore