768 research outputs found

    The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa)

    Get PDF
    Background In the present study, the effects of ultrasound pretreatment parameters including irradiation time and power on the quantity of the extracted phenolic compounds quantity as well as on some selected physicochemical properties of the extracted oils including oil extraction efficiency, acidity and peroxide values, color, and refractive index of the extracted oil of black cumin seeds with the use of cold press have been studied. Methods For each parameter, three different levels (30, 60, and 90 W) for the ultrasound power and (30, 45, and 60 min) and for the ultrasound irradiation time were studied. Each experiment was performed in three replications. Results The achieved results revealed that, with enhancements in the applied ultrasound power, the oil extraction efficiency, acidity value, total phenolic content, peroxide value, and color parameters increased significantly (P 0.05). Conclusions In summary, it could be mentioned that the application of ultrasound pretreatment in the oil extraction might improve the oil extraction efficiency, the extracted oil’s quality, and the extracted phenolic compounds content.info:eu-repo/semantics/publishedVersio

    Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology

    Get PDF
    The best European locality for complete Eocene mammal skeletons is Grube Messel, near Darmstadt, Germany. Although the site was surrounded by a para-tropical rain forest in the Eocene, primates are remarkably rare there, and only eight fragmentary specimens were known until now. Messel has now yielded a full primate skeleton. The specimen has an unusual history: it was privately collected and sold in two parts, with only the lesser part previously known. The second part, which has just come to light, shows the skeleton to be the most complete primate known in the fossil record.We describe the morphology and investigate the paleobiology of the skeleton. The specimen is described as Darwinius masillae n.gen. n.sp. belonging to the Cercamoniinae. Because the skeleton is lightly crushed and bones cannot be handled individually, imaging studies are of particular importance. Skull radiography shows a host of teeth developing within the juvenile face. Investigation of growth and proportion suggest that the individual was a weaned and independent-feeding female that died in her first year of life, and might have attained a body weight of 650-900 g had she lived to adulthood. She was an agile, nail-bearing, generalized arboreal quadruped living above the floor of the Messel rain forest.Darwinius masillae represents the most complete fossil primate ever found, including both skeleton, soft body outline and contents of the digestive tract. Study of all these features allows a fairly complete reconstruction of life history, locomotion, and diet. Any future study of Eocene-Oligocene primates should benefit from information preserved in the Darwinius holotype. Of particular importance to phylogenetic studies, the absence of a toilet claw and a toothcomb demonstrates that Darwinius masillae is not simply a fossil lemur, but part of a larger group of primates, Adapoidea, representative of the early haplorhine diversification

    Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model

    Get PDF
    The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters, which are potential new sources of CP violation. For particular values of these three parameters all known specific implementations of the model based on discrete Z_2 symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar. In this work, we discuss its main phenomenological consequences in flavour-changing processes at low energies and derive the corresponding constraints on the parameters of the aligned two-Higgs-doublet model.Comment: 46 pages, 19 figures. Version accepted for publication in JHEP. References added. Discussion slightly extended. Conclusions unchange

    Development of a short form of Mini-Mental State Examination for the screening of dementia in older adults with a memory complaint: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary care physicians need a brief and accurate screening test of dementia. The objective of this study was to determine whether a short form of Mini-Mental State Examination (SMMSE) was as accurate as the Mini-Mental State Examination (MMSE) in screening dementia.</p> <p>Methods</p> <p>Based on case control design study, SMMSE and MMSE were assessed in 184 community-dwelling older adults (mean age 81.3 ± 6.5 years, 71.7% women) with memory complaint sent by their primary care physician to a memory clinic. Included participants were separated into two groups: cognitively healthy individuals and demented individuals.</p> <p>Results</p> <p>The trade-off between sensitivity and specificity of the SMMSE for clinically diagnosed dementia was 4. Based on the cut-off value ≤ 4 for SMMSE and a cut-off value ≤ 24 for MMSE, the sensitivity of both tests was similar (89.5% for SMMSE versus 90.0% for MMSE), whereas the specificity, the positive predictive values (PPV) and the negative predictive values (NPV) were higher for SMMSE compared to MMSE (85.4 versus 75.5% for specificity; 95.5% versus 92.8% for PPV; 70.0 versus 68.9 for NPV). The positive and negative Likehood Ratio (LR) of SMMSE were higher than those of MMSE (respectively, 6.1 versus 3.7; 8.1 versus 7.7). In addition, odds ratio (OR) for dementia was higher for the SMMSE compared to the MMSE (OR = 49.8 with 95% confident interval (CI) [18.0; 137.8] versus OR = 28.6 with 95% CI [11.6; 70.3]).</p> <p>Conclusions</p> <p>SMMSE seems to be an efficient short screening test for dementia among community-dwelling older adults with a memory complaint. Further research is needed to confirm its predictive values among unselected primary care older patients.</p

    Nodes of Ranvier and Paranodes in Chronic Acquired Neuropathies

    Get PDF
    Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies. Longitudinal sections of superficial peroneal nerves were obtained from biopsy material from 12 patients with CIDP and 10 patients with CIAP and studied by immunofluorescence and in some cases electron microscopy. Electron microscopy revealed multiple alterations in the nodal and paranodal regions which predominated in Schwann cells in CIDP and in axons in CIAP. In CIDP paranodin/Caspr immunofluorescence was more widespread than in control nerves, extending along the axon in internodes where it appeared intense. Nodal channels Nav and KCNQ2 were less altered but were also detected in the internodes. In CIAP paranodes, paranodin labeling was irregular and/or decreased. To test the consequences of acquired primary Schwann cells alteration on axonal proteins, we used a mouse model based on induced deletion of the transcription factor Krox-20 gene. In the demyelinated sciatic nerves of these mice we observed alterations similar to those found in CIDP by immunofluorescence, and immunoblotting demonstrated increased levels of paranodin. Finally we examined whether the alterations in paranodin immunoreactivity could have a diagnosis value. In a sample of 16 biopsies, the study of paranodin immunofluorescence by blind evaluators led to correct diagnosis in 70±4% of the cases. This study characterizes for the first time the abnormalities of nodes of Ranvier in CIAP and CIDP, and the altered expression and distribution of nodal and paranodal proteins. Marked differences were observed between CIDP and CIAP and the alterations in paranodin immunofluorescence may be an interesting tool for their differential diagnosis

    An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis

    Get PDF
    Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease 3. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393 transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment. A subset of latent TB patients had signatures similar to those in active TB patients. We also identified a specific 86-transcript signature that discriminated active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis, suggest that this TB signature reflects both changes in cellular composition and altered gene expression. Although an IFN signature was also observed in whole blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic

    Alternative mRNA Editing in Trypanosomes Is Extensive and May Contribute to Mitochondrial Protein Diversity

    Get PDF
    The editing of trypanosome mitochondrial mRNAs produces transcripts necessary for mitochondrial functions including electron transport and oxidative phosphorylation. Precursor-mRNAs are often extensively edited by specific uridine insertion or deletion that is directed by small guide RNAs (gRNAs). Recently, it has been shown that cytochrome c oxidase subunit III (COXIII) mRNAs can be alternatively edited to encode a novel mitochondrial membrane protein composed of a unique hydrophilic N-terminal sequence of unknown function and the C-terminal hydrophobic segment of COXIII. To extend the analysis of alternative editing in Trypanosoma brucei we have constructed libraries with over 1100 full-length mitochondrial cDNAs and the sequences of over 1200 gRNA genes. Using this data, we show that alternative editing of COXIII, ATPase subunit 6 (A6), and NADH dehydrogenase subunits 7, 8 and 9 (ND7, 8, 9) mRNAs can produce novel open reading frames (ORFs). Several gRNAs potentially responsible for the alternative editing of these mRNAs were also identified. These findings show that alternative editing of mitochondrial mRNAs is common in T. brucei and expands the diversity of mitochondrial proteins in these organisms

    Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line

    Get PDF
    Background: A broad spectrum of cytotoxicity assays is currently used in the fields of (eco)toxicology and pharmacology. To choose an appropriate assay, different parameters like test compounds, detection mechanism, specificity, and sensitivity have to be considered. Furthermore, tissue or cell line can influence test performance. For zebrafish (Danio rerio), as emerging model organism, cell lines are now increasingly used, but few studies examined cytotoxicity in these cell systems. Therefore, we compared four cytotoxicity assays in the zebrafish liver cell line, ZFL, to test four differently acting model compounds. The tests comprised two colorimetric assays (MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity) and two fluorometric assays (alamarBlue® using resazurin, and CFDA-AM based on 5-carboxyfluorescein diacetate acetoxymethyl ester). Model compounds were the pharmaceutical Tamoxifen, its metabolite 4-Hydroxy-Tamoxifen, the fungicide Flusilazole and the polycyclic aromatic hydrocarbon Benzo[a]pyrene. Results: All four assays performed well in the ZFL cells and led to reproducible dose-response curves for all test compounds. Effective concentrations causing 10% or 50% loss of cell viability (EC10 and EC50 values) varied by a maximum factor of 7.0 for the EC10 values and a maximum factor of 1.8 for the EC50 values. The EC values were not statistically different between the four assays, which is due to the assessed unspecific effects of the compounds. However, most often, the MTT assay and LDH assay showed the highest and lowest EC values, respectively. Nevertheless, the LDH assay showed the highest intra- and inter-assay variabilities and the lowest signal-to-noise ratios. In contrast to MTT, the other three assays have the advantage of being non-destructive, easy to handle, and less time consuming. Furthermore, AB and CFDA-AM can be combined on the same set of cells without damaging the cells, allowing later on their use for the investigation of other endpoints. Conclusions: We recommend the alamarBlue and CFDA-AM assays for cytotoxicity assessment in ZFL cells, which can be applied either singly or combined.JRC.H.5-Rural, water and ecosystem resource

    Mapping Dirac quasiparticles near a single Coulomb impurity on graphene

    Get PDF
    The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant, which is the primary factor determining the strength of electron–electron interactions in graphene. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ε[subscript g] = 3.0±1.0. This small value of ε[subscript g] indicates that electron–electron interactions can contribute significantly to graphene properties.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1066)United States. Dept. of Energy. Office of Science (Contract DE-AC02-05CH11231)National Science Foundation (U.S.) (Award DMR-0906539
    corecore