1,490 research outputs found

    Effects of saddle height on pedal force effectiveness

    Get PDF
    Bicycle saddle height configuration may affect pedal force application. Our aim was to compare pedal force effectiveness for different saddle height configurations. Eleven cyclists (38 ± 12 years) and eleven triathletes (44 ± 8 years) with competitive experience performed 2-min trials at four different saddle heights (preferred, high, low, theoretical optimal) each separated by one minute of rest. Workload was normalized by body weight and pedalling cadence was visually controlled by the athletes at 90 ± 2 rpm for all trials. The preferred saddle height replicated the horizontal and vertical configuration of each athlete’s bicycle. High and low saddle heights were selected to elicit ± 10° knee flexion from knee flexion at preferred saddle height. Guidelines from Peveler were used to set the theoretical optimal saddle height based on 25° knee flexion when the pedal crank was at the 6 o’clock position. Knee joint angles were measured with a goniometer prior to each trial. Normal and shear forces were measured using an instrumented right pedal and pedal-to-crank angle was measured using an angular potentiometer. A reed switch attached to the bicycle frame detected the position of the crank in relation to the pedal revolution. Forces on the pedal surface were resolved into the tangential force on the crank to compute force effectiveness (ratio between tangential and resultant force applied on the pedal). Magnitudes of differences between the saddle heights were assessed by effect sizes (ES) for the average total (resultant) force and force effectiveness. To elicit ± 10° knee flexion, changes of ± 3% of the preferred saddle height were required. Changes in average resultant force with saddle height were trivial (1% for preferred versus optimal; ES = 0.2) to moderate (5% for high versus low; ES = 0.8). Changes in force effectiveness with saddle height were small (2% for preferred versus optimal; ES = 0.3) to moderate (6% for high versus low; ES = 1.0). Lower saddle heights produced higher resultant force but lower force effectiveness. Saddle height changes resulted in moderate effects for pedal resultant force and force effectiveness for most saddle height comparisons

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    In vitro and in vivo antileishmanial efficacy of a combination therapy of diminazene and artesunate against Leishmania donovani in BALB /c mice

    Get PDF
    The in vitro and in vivo activity of diminazene (Dim), artesunate (Art) and combination of Dim and Art (Dim-Art) against Leishmania donovani was compared to reference drug; amphotericin B. IC50 of Dim-Art was found to be 2.28±0.24μ2.28 \pm 0.24 \mu g/mL while those of Dim and Art were 9.16±0.3μ9.16 \pm 0.3 \mu g/mL and 4.64±0.48μ4.64 \pm 0.48 \mu g/mL respectively. The IC50 for Amphot B was 0.16±0.32μ0.16 \pm 0.32 \mu g/mL against stationary-phase promastigotes. In vivo evaluation in the L. donovani BALB/c mice model indicated that treatments with the combined drug therapy at doses of 12.5 mg/kg for 28 consecutive days significantly (p<0.001p < 0.001) reduced parasite burden in the spleen as compared to the single drug treatments given at the same dosages. Although parasite burden was slightly lower (p<0.05p < 0.05) in the Amphot B group than in the Dim-Art treatment group, the present study demonstrates the positive advantage and the potential use of the combined therapy of Dim-Art over the constituent drugs, Dim or Art when used alone. Further evaluation is recommended to determine the most efficacious combination ratio of the two compounds.Comment: 4 Pages, 3 Figure

    Single-cell RNA sequencing analysis of vestibular schwannoma reveals functionally distinct macrophage subsets.

    Get PDF
    BACKGROUND: Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES: The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS: scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS: scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS: Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS

    The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis

    Get PDF
    The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity

    Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Get PDF
    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems

    Successful treatment of tracheal stenosis by rigid bronchoscopy and topical mitomycin C: a case report

    Get PDF
    Tracheal stenosis is a known complication of prolonged intubation. It is difficult to treat and traditional surgical approach is associated with significant risk and complications. Recurrent stenosis due to granulation tissue necessitates repeated procedures. We describe a case of short web-like tracheal stenosis (concentric membranous stenosis less than 1 cm in length without associated cartilage damage) managed by a minimally invasive thoracic endoscopic approach. Topical application of Mitomycin C, a potent fibroblast inhibitor reduces granulation tissue formation and prevents recurrence

    In vitro growth inhibition of bloodstream forms of Trypanosoma brucei and Trypanosoma congolense by iron chelators

    Get PDF
    African trypanosomes exert significant morbidity and mortality in man and livestock. Only a few drugs are available for the treatment of trypanosome infections and therefore, the development of new anti-trypanosomal agents is required. Previously it has been shown that bloodstream-form trypanosomes are sensitive to the iron chelator deferoxamine. In this study the effect of 13 iron chelators on the growth of Trypanosoma brucei, T. congolense and human HL-60 cells was tested in vitro. With the exception of 2 compounds, all chelators exhibited anti-trypanosomal activities, with 50% inhibitory concentration (IC(50)) values ranging between 2.1 – 220 μM. However, the iron chelators also displayed cytotoxicity towards human HL-60 cells and therefore, only less favourable selectivity indices compared to commercially available drugs. Interfering with iron metabolism may be a new strategy in the treatment of trypanosome infections. More specifically, lipophilic iron-chelating agents may serve as lead compounds for novel anti-trypanosomal drug development
    • …
    corecore