6,087 research outputs found

    Photofission and Quasi-Deuteron-Nuclear State as Mixing of Bosons and Fermions

    Get PDF
    The empirical-phenomenological quasi-deuteron photofission description is theoretically justified within the semiclassical, intermediate statistics model. The transmutational fermion (nucleon) - boson (quasi-deuteron) potential plays an essential role in the present context and is expressed in terms of thermodynamical and of microscopical quantities, analogous to those commonly used in the superfluid nuclear model.Comment: 7 pages, RevTex, to appear in Zeit. f. Phys.

    An evaluation of enteral nutrition practices and nutritional provision in children during the entire length of stay in critical care

    Get PDF
    <b>Background</b> Provision of optimal nutrition in children in critical care is often challenging. This study evaluated exclusive enteral nutrition (EN) provision practices and explored predictors of energy intake and delay of EN advancement in critically ill children.<p></p> <b>Methods</b> Data on intake and EN practices were collected on a daily basis and compared against predefined targets and dietary reference values in a paediatric intensive care unit. Factors associated with intake and advancement of EN were explored.<p></p> <b>Results</b> Data were collected from 130 patients and 887 nutritional support days (NSDs). Delay to initiate EN was longer in patients from both the General Surgical and congenital heart defect (CHD) Surgical groups [Median (IQR); CHD Surgical group: 20.3 (16.4) vs General Surgical group: 11.4 (53.5) vs Medical group: 6.5 (10.9) hours; p <= 0.001]. Daily fasting time per patient was significantly longer in patients from the General Surgical and CHD Surgical groups than those from the Medical group [% of 24 h, Median (IQR); CHD Surgical group: 24.0 (29.2) vs General Surgical group: 41.7 (66.7) vs Medical group: 9.4 (21.9); p <= 0.001]. A lower proportion of fluids was delivered as EN per patient (45% vs 73%) or per NSD (56% vs 73%) in those from the CHD Surgical group compared with those with medical conditions. Protein and energy requirements were achieved in 38% and 33% of the NSDs. In a substantial proportion of NSDs, minimum micronutrient recommendations were not met particularly in those patients from the CHD Surgical group. A higher delivery of fluid requirements (p < 0.05) and a greater proportion of these delivered as EN (p < 0.001) were associated with median energy intake during stay and delay of EN advancement. Fasting (31%), fluid restriction (39%) for clinical reasons, procedures requiring feed cessation and establishing EN (22%) were the most common reasons why target energy requirements were not met.<p></p> <b>Conclusions</b> Provision of optimal EN support remains challenging and varies during hospitalisation and among patients. Delivery of EN should be prioritized over other "non-nutritional" fluids whenever this is possible.<p></p&gt

    Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition

    Get PDF
    BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.010137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.710157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Silicon-based spin and charge quantum computation

    Full text link
    Silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals due to the relatively long spin coherence times. For these spin qubits, donor electron charge manipulation by external gates is a key ingredient for control and read-out of single-qubit operations, while shallow donor exchange gates are frequently invoked to perform two-qubit operations. More recently, charge qubits based on tunnel coupling in P2+_2^+ substitutional molecular ions in Si have also been proposed. We discuss the feasibility of the building blocks involved in shallow donor quantum computation in silicon, taking into account the peculiarities of silicon electronic structure, in particular the six degenerate states at the conduction band edge. We show that quantum interference among these states does not significantly affect operations involving a single donor, but leads to fast oscillations in electron exchange coupling and on tunnel-coupling strength when the donor pair relative position is changed on a lattice-parameter scale. These studies illustrate the considerable potential as well as the tremendous challenges posed by donor spin and charge as candidates for qubits in silicon.Comment: Review paper (invited) - to appear in Annals of the Brazilian Academy of Science

    Developing tools to promote culturally competent compassion, courage, and intercultural communication in healthcare

    Get PDF
    Background: Compassion is an important concept in healthcare, and in addition, care should be delivered in a culturally competent manner, taking into account the values, culture, and health beliefs of the individual. However, the training of nurses and other healthcare professionals may not adequately equip them to practice in a manner which is both compassionate and culturally competent. In this paper, we report on the development of three learning tools, designed to promote the skills and strengthen the capacity of nurses and healthcare professionals to provide culturally competent and compassionate care. Methods: The project involved the participation of six European countries in the development of three learning tools, covering culturally competent compassion, culturally competent courage, and intercultural communication. The principles which informed the methodology derive from the previous work on the Papadopoulos, Tilki and Taylor (PTT) model of transcultural nursing and cultural competence, and were also informed by the Intercultural Education of Nurses in Europe (IENE1 & IENE2) projects. Each partner country was required to produce one tool for each topic area, based on guidance provided by the project co-ordinator, leading to the development of eighteen tools in total. The tools were administered mainly to student nurses to test their feasibility. Results: The emerging tools contained important theoretical and practical components, whereby innovative learning methods and case studies were included. Student nurses enjoyed using the tools, and enjoyed their flexibility. The learning tools enabled students to become stimulated and to engage together leading to a positive learning experience. Discussion: The tools allow for a positive learning experience and reflection of good practice to take place. The flexibility and content of the tools allows for them to be of equal value to other healthcare professionals as well as nursing staff. Conclusion: The tools were initially utilised mainly with student nurses and were received with a positive response. Work is now in place to further implement the tools and evaluate the longer term effects among a range of healthcare professionals and service user health outcomes

    Clinical and genetic characterisation of dystrophin-deficient muscular dystrophy in a family of Miniature Poodle dogs

    Get PDF
    Four full-sibling intact male Miniature Poodles were evaluated at 4–19 months of age. One was clinically normal and three were affected. All affected dogs were reluctant to exercise and had generalised muscle atrophy, a stiff gait and a markedly elevated serum creatine kinase activity. Two affected dogs also showed poor development, learning difficulties and episodes of abnormal behaviour. In these two dogs, investigations into forebrain structural and metabolic diseases were unremarkable; electromyography demonstrated fibrillation potentials and complex repetitive discharges in the infraspinatus, supraspinatus and epaxial muscles. Histopathological, immunohistochemical and immunoblotting analyses of muscle biopsies were consistent with dystrophin-deficient muscular dystrophy. DNA samples were obtained from all four full-sibling male Poodles, a healthy female littermate and the dam, which was clinically normal. Whole genome sequencing of one affected dog revealed a >5 Mb deletion on the X chromosome, encompassing the entire DMD gene. The exact deletion breakpoints could not be experimentally ascertained, but we confirmed that this region was deleted in all affected males, but not in the unaffected dogs. Quantitative polymerase chain reaction confirmed all three affected males were hemizygous for the mutant X chromosome, while the wildtype chromosome was observed in the unaffected male littermate. The female littermate and the dam were both heterozygous for the mutant chromosome. Forty-four Miniature Poodles from the general population were screened for the mutation and were homozygous for the wildtype chromosome. The finding represents a naturally-occurring mutation causing dystrophin-deficient muscular dystrophy in the dog

    Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)

    Get PDF
    Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2
    corecore