19 research outputs found

    AcrB Trimer Stability and Efflux Activity, Insight from Mutagenesis Studies

    Get PDF
    The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrBP223G was the least active. Detailed characterization of AcrBP223G revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a β€œwedge” close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain

    Saturation in qualitative research: exploring its conceptualization and operationalization

    Get PDF
    Deposited on 20 October 2017 in Keele University Repository at: http://eprints.keele.ac.uk/4122/Saturation has attained widespread acceptance as a methodological principle in qualitative research. It is commonly taken to indicate that, on the basis of the data that have been collected or analysed hitherto, further data collection and/or analysis are unnecessary. However, there appears to be uncertainty as to how saturation should be conceptualized, and inconsistencies in its use. In this paper, we look to clarify the nature, purposes and uses of saturation, and in doing so add to theoretical debate on the role of saturation across different methodologies.Weidentify four distinct approaches to saturation, which differ in terms of the extent to which an inductive or a deductive logic is adopted, and the relative emphasis on data collection, data analysis, and theorizing. We explore the purposes saturation might serve in relation to these different approaches, and the implications for how and when saturation will be sought. In examining these issues, we highlight the uncertain logic underlying saturation- as essentially a predictive statement about the unobserved based on the observed, a judgement that, we argue, results in equivocation, and may in part explain the confusion surrounding its use.Weconclude that saturation should be operationalized in a way that is consistent with the research question(s), and the theoretical position and analytic framework adopted, but also that there should be some limit to its scope, so as not to risk saturation losing its coherence and potency if its conceptualization and uses are stretched too widely.sch_die52pub5265pub

    Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation

    Get PDF
    BACKGROUND: Immunosuppressants such as mycophenolate mofetil (MMF) have the capacity to inhibit microglial and astrocytic activation and to reduce the extent of cell death after neuronal injury. This study was designed to determine the effective neuroprotective time frame in which MMF elicits its beneficial effects, by analyzing glial cell proliferation, migration, and apoptosis. METHODS: Using organotypic hippocampal slice cultures (OHSCs), temporal dynamics of proliferation and apoptosis after N-methyl-D-aspartate (NMDA)-mediated excitotoxicity were analyzed by quantitative morphometry of Ki-67 or cleaved caspase-3 immunoreactive glial cells. Treatment on NMDA-lesioned OHSCs with mycophenolate mofetil (MMF)100 μg/mL was started at different time points after injury or performed within specific time frames, and the numbers of propidium iodide (PI)(+) degenerating neurons and isolectin (I)B(4)(+) microglial cells were determined. Pre-treatment with guanosine 100 μmol/l was performed to counteract MMF-induced effects. The effects of MMF on reactive astrocytic scar formation were investigated in the scratch-wound model of astrocyte monolayers. RESULTS: Excitotoxic lesion induction led to significant increases in glial proliferation rates between 12 and 36 hours after injury and to increased levels of apoptotic cells between 24 and 72 hours after injury. MMF treatment significantly reduced glial proliferation rates without affecting apoptosis. Continuous MMF treatment potently reduced the extent of neuronal cell demise when started within the first 12 hours after injury. A crucial time-frame of significant neuroprotection was identified between 12 and 36 hours after injury. Pre-treatment with the neuroprotective nucleoside guanosine reversed MMF-induced antiproliferative effects on glial cells. In the scratch-wound model, gap closure was reached within 48 hours in controls, and was potently inhibited by MMF. CONCLUSIONS: Our data indicate that immunosuppression by MMF significantly attenuates the extent of neuronal cell death when administered within a crucial time frame after injury. Moreover, long-lasting immunosuppression, as required after solid-organ transplantation, does not seem to be necessary. Targeting inosine 5-monophosphate dehydrogenase, the rate-limiting enzyme of purine synthesis, is an effective strategy to modulate the temporal dynamics of proliferation and migration of microglia and astrocytes, and thus to reduce the extent of secondary neuronal damage and scar formation

    Children with sex chromosome trisomies: parental disclosure of genetic status

    No full text
    Sex chromosome trisomies (SCTs) are frequently diagnosed, both prenatally and postnatally, but the highly variable childhood outcomes can leave parents at a loss on whether, when and how to disclose genetic status. In two complementary studies, we detail current parental practices, with a view to informing parents and their clinicians. Study 1 surveyed detailed qualitative data from focus groups of parents and affected young people with either Trisomy X or XYY (N=34 families). These data suggested that decisions to disclose were principally affected by the child’s level of cognitive, social and emotional functioning. Parents reported that they were more likely to disclose when a child was experiencing difficulties. In Study 2, standardised data on cognitive, social and emotional outcomes in 126 children with an SCT and 63 sibling controls highlighted results that converged with Study 1: logistic regression analyses revealed that children with the lowest levels of functioning were more likely to know about their SCT than those children functioning at a higher level. These effects were also reflected in the likelihood of parents to disclose to unaffected siblings, schools and general practitioners. In contrast, specific trisomy type and the professional category of the clinician providing the original diagnosis did not affect likelihood of disclosure. Our study emphasises the complex weighing up of costs and benefits that parents engage in when deciding whether to disclose a diagnosis

    High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems

    No full text
    The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.https://nsuworks.nova.edu/cnso_math_facbooks/1022/thumbnail.jp
    corecore