349 research outputs found

    1H-NMR-Based Metabolic Profiling of Maternal and Umbilical Cord Blood Indicates Altered Materno-Foetal Nutrient Exchange in Preterm Infants

    Get PDF
    Background: Adequate foetal growth is primarily determined by nutrient availability, which is dependent on placental nutrient transport and foetal metabolism. We have used 1H nuclear magnetic resonance (NMR) spectroscopy to probe the metabolic adaptations associated with premature birth. Methodology: The metabolic profile in 1H NMR spectra of plasma taken immediately after birth from umbilical vein, umbilical artery and maternal blood were recorded for mothers delivering very-low-birth-weight (VLBW) or normo-ponderal full-term (FT) neonates. Principal Findings: Clear distinctions between maternal and cord plasma of all samples were observed by principal component analysis (PCA). Levels of amino acids, glucose, and albumin-lysyl in cord plasma exceeded those in maternal plasma, whereas lipoproteins (notably low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) and lipid levels were lower in cord plasma from both VLBW and FT neonates. The metabolic signature of mothers delivering VLBW infants included decreased levels of acetate and increased levels of lipids, pyruvate, glutamine, valine and threonine. Decreased levels of lipoproteins glucose, pyruvate and albumin-lysyl and increased levels of glutamine were characteristic of cord blood (both arterial and venous) from VLBW infants, along with a decrease in levels of several amino acids in arterial cord blood. Conclusion: These results show that, because of its characteristics and simple non-invasive mode of collection, cord plasma is particularly suited for metabolomic analysis even in VLBW infants and provides new insights into the materno-foetal nutrient exchange in preterm infants

    A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research

    Get PDF
    This paper summarizes recent developments in audio and tactile feedback based assistive technologies targeting the blind community. Current technology allows applications to be efficiently distributed and run on mobile and handheld devices, even in cases where computational requirements are significant. As a result, electronic travel aids, navigational assistance modules, text-to-speech applications, as well as virtual audio displays which combine audio with haptic channels are becoming integrated into standard mobile devices. This trend, combined with the appearance of increasingly user- friendly interfaces and modes of interaction has opened a variety of new perspectives for the rehabilitation and training of users with visual impairments. The goal of this paper is to provide an overview of these developments based on recent advances in basic research and application development. Using this overview as a foundation, an agenda is outlined for future research in mobile interaction design with respect to users with special needs, as well as ultimately in relation to sensor-bridging applications in genera

    Bone metastases from renal cell carcinoma: patient survival after surgical treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surgery is the primary treatment of skeletal metastases from renal cell carcinoma, because radiation and chemotherapy frequently are not effecting the survival. We therefore explored factors potentially affecting the survival of patients after surgical treatment.</p> <p>Methods</p> <p>We retrospectively reviewed 101 patients operatively treated for skeletal metastases of renal cell carcinoma between 1980 and 2005. Overall survival was calculated using the Kaplan-Meier method. The effects of different variables were evaluated using a log-rank test.</p> <p>Results</p> <p>27 patients had a solitary bone metastasis, 20 patients multiple bone metastases and 54 patients had concomitant visceral metastases. The overall survival was 58% at 1 year, 37% at 2 years and 12% at 5 years. Patients with solitary bone metastases had a better survival (p < 0.001) compared to patients with multiple metastases. Age younger than 65 years (p = 0.036), absence of pathologic fractures (p < 0.001) and tumor-free resection margins (p = 0.028) predicted higher survival. Gender, location of metastases, time between diagnosis of renal cell carcinoma and treatment of metastatic disease, incidence of local recurrence, radiation and chemotherapy did not influence survival.</p> <p>Conclusions</p> <p>The data suggest that patients with a solitary metastasis or a limited number of resectable metastases are candidates for wide resections. As radiation and chemotherapy are ineffective in most patients, surgery is a better option to achieve local tumor control and increase the survival.</p

    Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease

    Get PDF
    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention

    A microscale protein NMR sample screening pipeline

    Get PDF
    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30–200 μg in 8–35 μl volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure

    Assessing the importance of car meanings and attitudes in consumer evaluations of electric vehicles

    Get PDF
    This paper reports findings from a research study which assesses the importance of attitudinal constructs related to general car attitudes and the meanings attached to car ownership over evaluations of electric vehicles (EVs). The data are assessed using principal component analysis to evaluate the structure of the underlying attitudinal constructs. The identified constructs are then entered into a hierarchical regression analysis which uses either positive or negative evaluations of the instrumental capabilities of EVs as the dependent variable. Results show that attitudinal constructs offer additional predictive power over socioeconomic characteristics and that the symbolic and emotive meanings of car ownership are as, if not more, effective in explaining the assessment of EV instrumental capability as compared to issues of cost and environmental concern. Additionally, the more important an individual considers their car to be in their everyday life, the more negative their evaluations are of EVs whilst individuals who claim to be knowledgeable about cars in general and EVs in particular have a lower propensity for negative EV attitudes. However, positive and negative EV attitudes are related to different attitudinal constructs suggesting that it is possible for someone to hold both negative and positive assessments at the same time

    Secretogranin II; a Protein Increased in the Myocardium and Circulation in Heart Failure with Cardioprotective Properties

    Get PDF
    Background: Several beneficial effects have been demonstrated for secretogranin II (SgII) in non-cardiac tissue. As cardiac production of chromogranin A and B, two related proteins, is increased in heart failure (HF), we hypothesized that SgII could play a role in cardiovascular pathophysiology. Methodology/Principal Findings: SgII production was characterized in a post-myocardial infarction heart failure (HF) mouse model, functional properties explored in experimental models, and circulating levels measured in mice and patients with stable HF of moderate severity. SgII mRNA levels were 10.5 fold upregulated in the left ventricle (LV) of animals with myocardial infarction and HF (p&lt;0.001 vs. sham-operated animals). SgII protein levels were also increased in the LV, but not in other organs investigated. SgII was produced in several cell types in the myocardium and cardiomyocyte synthesis of SgII was potently induced by transforming growth factor-beta and norepinephrine stimulation in vitro. Processing of SgII to shorter peptides was enhanced in the failing myocardium due to increased levels of the proteases PC1/3 and PC2 and circulating SgII levels were increased in mice with HF. Examining a pathophysiological role of SgII in the initial phase of post-infarction HF, the SgII fragment secretoneurin reduced myocardial ischemia-reperfusion injury and cardiomyocyte apoptosis by 30% and rapidly increased cardiomyocyte Erk1/2 and Stat3 phosphorylation. SgII levels were also higher in patients with stable, chronic HF compared to age-and gender-matched control subjects: median 0.16 (Q1-3 0.14-0.18) vs. 0.12 (0.10-0.14) nmol/L, p&lt;0.001. Conclusions: We demonstrate increased myocardial SgII production and processing in the LV in animals with myocardial infarction and HF, which could be beneficial as the SgII fragment secretoneurin protects from ischemia-reperfusion injury and cardiomyocyte apoptosis. Circulating SgII levels are also increased in patients with chronic, stable HF and may represent a new cardiac biomarker

    Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts

    Get PDF
    Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs
    corecore