213 research outputs found

    Resistance training with soy vs whey protein supplements in hyperlipidemic males

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most individuals at risk for developing cardiovascular disease (CVD) can reduce risk factors through diet and exercise before resorting to drug treatment. The effect of a combination of resistance training with vegetable-based (soy) versus animal-based (whey) protein supplementation on CVD risk reduction has received little study. The study's purpose was to examine the effects of 12 weeks of resistance exercise training with soy versus whey protein supplementation on strength gains, body composition and serum lipid changes in overweight, hyperlipidemic men.</p> <p>Methods</p> <p>Twenty-eight overweight, male subjects (BMI 25–30) with serum cholesterol >200 mg/dl were randomly divided into 3 groups (placebo (n = 9), and soy (n = 9) or whey (n = 10) supplementation) and participated in supervised resistance training for 12 weeks. Supplements were provided in a double blind fashion.</p> <p>Results</p> <p>All 3 groups had significant gains in strength, averaging 47% in all major muscle groups and significant increases in fat free mass (2.6%), with no difference among groups. Percent body fat and waist-to-hip ratio decreased significantly in all 3 groups an average of 8% and 2%, respectively, with no difference among groups. Total serum cholesterol decreased significantly, again with no difference among groups.</p> <p>Conclusion</p> <p>Participation in a 12 week resistance exercise training program significantly increased strength and improved both body composition and serum cholesterol in overweight, hypercholesterolemic men with no added benefit from protein supplementation.</p

    Safety assessment of inhaled xylitol in mice and healthy volunteers

    Get PDF
    BACKGROUND: Xylitol is a 5-carbon sugar that can lower the airway surface salt concentration, thus enhancing innate immunity. We tested the safety and tolerability of aerosolized iso-osmotic xylitol in mice and human volunteers. METHODS: This was a prospective cohort study of C57Bl/6 mice in an animal laboratory and healthy human volunteers at the clinical research center of a university hospital. Mice underwent a baseline methacholine challenge, exposure to either aerosolized saline or xylitol (5% solution) for 150 minutes and then a follow-up methacholine challenge. The saline and xylitol exposures were repeated after eosinophilic airway inflammation was induced by sensitization and inhalational challenge to ovalbumin. Normal human volunteers underwent exposures to aerosolized saline (10 ml) and xylitol, with spirometry performed at baseline and after inhalation of 1, 5, and 10 ml. Serum osmolarity and electrolytes were measured at baseline and after the last exposure. A respiratory symptom questionnaire was administered at baseline, after the last exposure, and five days after exposure. In another group of normal volunteers, bronchoalveolar lavage (BAL) was done 20 minutes and 3 hours after aerosolized xylitol exposure for levels of inflammatory markers. RESULTS: In naïve mice, methacholine responsiveness was unchanged after exposures to xylitol compared to inhaled saline (p = 0.49). There was no significant increase in Penh in antigen-challenged mice after xylitol exposure (p = 0.38). There was no change in airway cellular response after xylitol exposure in naïve and antigen-challenged mice. In normal volunteers, there was no change in FEV1 after xylitol exposures compared with baseline as well as normal saline exposure (p = 0.19). Safety laboratory values were also unchanged. The only adverse effect reported was stuffy nose by half of the subjects during the 10 ml xylitol exposure, which promptly resolved after exposure completion. BAL cytokine levels were below the detection limits after xylitol exposure in normal volunteers. CONCLUSIONS: Inhalation of aerosolized iso-osmotic xylitol was well-tolerated by naïve and atopic mice, and by healthy human volunteers

    Honey health benefits and uses in medicine

    Get PDF
    The generation of reactive oxygen species (ROS) and other free radicals during metabolism is an essential and normal process that ideally is compensated through the antioxidant system. However, due to many environmental, lifestyle, and pathological situations, free radicals and oxidants can be produced in excess, resulting in oxidative damage of biomolecules (e.g., lipids, proteins, and DNA). This plays a major role in the development of chronic and degenerative illness such as cancer, autoimmune disorders, aging, cataract, rheumatoid arthritis, cardiovascular, and neurodegenerative diseases (Pham-Huy et al. 2008; Willcox et al. 2004). The human body has several mechanisms to counteract oxidative stress by producing antioxidants, which are either naturally synthetized in situ, or externally supplied through foods, and/or supplements (Pham-Huy et al. 2008).info:eu-repo/semantics/publishedVersio

    S100B as a potential biomarker and therapeutic target in multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS.This work was supported by Medal of Honor L’Oréal for Women in Science (FCT, UNESCO, L’Óreal) and innovation grant (Ordem dos Farmacêuticos) to AF, a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT-SFRH/BPD/96794/2013) and a DuPré Grant from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to AB, and by FCT-Pest- OE/SAU/UI4013 to iMed.ULisboa.info:eu-repo/semantics/publishedVersio

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk

    Get PDF
    BACKGROUND: Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk. METHODS: We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes. RESULTS: Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points. CONCLUSIONS: Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease

    Disease patterns in the next decade (Tulevaisuuden kansantaudit)

    No full text
    corecore