5,950 research outputs found
Chaos around Holographic Regge Trajectories
Using methods of Hamiltonian dynamical systems, we show analytically that a
dynamical system connected to the classical spinning string solution
holographically dual to the principal Regge trajectory is non-integrable. The
Regge trajectories themselves form an integrable island in the total phase
space of the dynamical system. Our argument applies to any gravity background
dual to confining field theories and we verify it explicitly in various
supergravity backgrounds: Klebanov-Strassler, Maldacena-Nunez, Witten QCD and
the AdS soliton. Having established non-integrability for this general class of
supergravity backgrounds, we show explicitly by direct computation of the
Poincare sections and the largest Lyapunov exponent, that such strings have
chaotic motion.Comment: 28 pages, 5 figures. V3: Minor changes complying to referee's
suggestions. Typos correcte
Effective algorithm of analysis of integrability via the Ziglin's method
In this paper we continue the description of the possibilities to use
numerical simulations for mathematically rigorous computer assisted analysis of
integrability of dynamical systems. We sketch some of the algebraic methods of
studying the integrability and present a constructive algorithm issued from the
Ziglin's approach. We provide some examples of successful applications of the
constructed algorithm to physical systems.Comment: a figure added, version accepted to JDC
Ventricular fibrillation detection in ventricular fibrillation signals corrupted by cardiopulmonary resuscitation artifact
This study is focused on the removal of artifacts due to Cardio Pulmonary Resuscitation (CPR) on Ventricular Fibrillation ECG signals. The aim is to allow a reliable analysis of the cardiac rhythm by an AED or the defibrillation success analysis during CPR episodes. The research is based on a human model for the CPR artifact and the VF ECG signals. The test signals were generated adding the CPR artifact (noise) to the VF (signal), with a known Signal-to-Noise Ratio (SNR). The results of the adaptive Kalman filtering have been obtained according to three different levels: SNR improvement; Sensitivity improvement in the AED algorithm for the detection of shockable rhythm; and Variations of the significant frequencies, compared to the values obtained with the original VF signals. In all cases, remarkable results have been achieved regarding to the efficiency in the artifact removal. 1
A new precise mass for the progenitor of the Type IIP SN 2008bk
The progenitor of the Type IIP supernova (SN) 2008bk was discovered in pre-explosion g'r'i'IYJHK(s) images, acquired with European Southern Observatory Very Large Telescope FOcal Reducer and low dispersion Spectrograph, High Acuity Wide field K-band Imager and Infrared Spectrometer and Array Camera instruments and the Gemini Multi-Object Spectrograph-South instrument. The wealth of pre-explosion observations makes the progenitor of this SN one of the best studied, since the detection of the progenitor of SN 1987A. Previous analyses of the properties of the progenitor were hampered by the limited quality of the photometric calibration of the pre-explosion images and the crowded nature of the field containing the SN. We present new late-time observations of the site of SN 2008bk acquired with identical instrument and filter configurations as the pre-explosion observations, and confirm that the previously identified red supergiant (RSG) star was the progenitor of this SN and has now disappeared. Image subtraction techniques were used to conduct precise photometry of the now missing progenitor, independently of blending from any nearby stars. The nature of the surrounding stellar population and their contribution to the flux attributed to the progenitor in the pre-explosion images are probed using Hubble Space Telescope Wide Field Camera 3 Ultraviolet-Visible/Infrared observations. In comparison with MARCS synthetic spectra, we find the progenitor was a highly reddened RSG with luminosity log(L/L-circle dot) = 4.84(-0.12)(+0.10), corresponding to an initial mass of M-init = 12.9(-1.8)(+1.6)M(circle dot). The temperature of the progenitor was hotter than previously expected for RSGs (T similar to 4330 K), but consistent with new temperatures derived for RSGs using spectral energy distribution fitting techniques. We show that there is evidence for significant extinction of the progenitor, possibly arising in the circumstellar medium, but that this dust yields a similar reddening law to dust found in the interstellar medium (E(B - V) = 0.77 with R-V = 3.1). Our improved analysis, which carefully accounts for the systematics, results in a more precise and robust mass estimate, making the progenitor of SN 2008bk the most well understood progenitor of a Type IIP SN from pre-explosion observations.</p
Recommended from our members
GRB 180620A: Evidence for Late-time Energy Injection
The early optical emission of gamma-ray bursts (GRBs) gives an opportunity to understand the central engine and first stages of these events. About 30% of GRBs present flares whose origin is still a subject of discussion. We present optical photometry of GRB 180620A with the COATLI telescope and RATIR instrument. COATLI started to observe from the end of prompt emission at T + 39.3 s and RATIR from T + 121.4 s. We supplement the optical data with the X-ray light curve from Swift/XRT. We observe an optical flare from T + 110 s to T + 550 s, with a temporal index decay α O,decay = 1.32 ± 0.01, and Δt/t = 1.63, which we interpret as the signature of a reverse shock component. After the initial normal decay the light curves show a long plateau from T + 500 s to T + 7800 s in both X-rays and the optical before decaying again after an achromatic jet break at T + 7800 s. Fluctuations are seen during the plateau phase in the optical. Adding to the complexity of GRB afterglows, the plateau phase (typically associated with the coasting phase of the jet) is seen in this object after the "normal" decay phase (associated with the deceleration phase of the jet), and the jet break phase occurs directly after the plateau. We suggest that this sequence of events can be explained by a rapid deceleration of the jet with t d ≲ 40 s due to the high density of the environment (≈100 cm-3) followed by reactivation of the central engine, which causes the flare and powers the plateau phase
Microbial catabolic activities are naturally selected by metabolic energy harvest rate
The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate
- …