207 research outputs found

    Deep Learning versus Classical Regression for Brain Tumor Patient Survival Prediction

    Full text link
    Deep learning for regression tasks on medical imaging data has shown promising results. However, compared to other approaches, their power is strongly linked to the dataset size. In this study, we evaluate 3D-convolutional neural networks (CNNs) and classical regression methods with hand-crafted features for survival time regression of patients with high grade brain tumors. The tested CNNs for regression showed promising but unstable results. The best performing deep learning approach reached an accuracy of 51.5% on held-out samples of the training set. All tested deep learning experiments were outperformed by a Support Vector Classifier (SVC) using 30 radiomic features. The investigated features included intensity, shape, location and deep features. The submitted method to the BraTS 2018 survival prediction challenge is an ensemble of SVCs, which reached a cross-validated accuracy of 72.2% on the BraTS 2018 training set, 57.1% on the validation set, and 42.9% on the testing set. The results suggest that more training data is necessary for a stable performance of a CNN model for direct regression from magnetic resonance images, and that non-imaging clinical patient information is crucial along with imaging information.Comment: Contribution to The International Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018, survival prediction tas

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Monitoring the early signs of cognitive decline in elderly by computer games: an MRI study

    Get PDF
    BACKGROUND: It is anticipated that current and future preventive therapies will likely be more effective in the early stages of dementia, when everyday functioning is not affected. Accordingly the early identification of people at risk is particularly important. In most cases, when subjects visit an expert and are examined using neuropsychological tests, the disease has already been developed. Contrary to this cognitive games are played by healthy, well functioning elderly people, subjects who should be monitored for early signs. Further advantages of cognitive games are their accessibility and their cost-effectiveness. PURPOSE: The aim of the investigation was to show that computer games can help to identify those who are at risk. In order to validate games analysis was completed which measured the correlations between results of the 'Find the Pairs' memory game and the volumes of the temporal brain regions previously found to be good predictors of later cognitive decline. PARTICIPANTS AND METHODS: 34 healthy elderly subjects were enrolled in the study. The volume of the cerebral structures was measured by MRI. Cortical reconstruction and volumetric segmentation were performed by Freesurfer. RESULTS: There was a correlation between the number of attempts and the time required to complete the memory game and the volume of the entorhinal cortex, the temporal pole, and the hippocampus. There was also a correlation between the results of the Paired Associates Learning (PAL) test and the memory game. CONCLUSIONS: The results gathered support the initial hypothesis that healthy elderly subjects achieving lower scores in the memory game have increased level of atrophy in the temporal brain structures and showed a decreased performance in the PAL test. Based on these results it can be concluded that memory games may be useful in early screening for cognitive decline

    Probabilistic 3D surface reconstruction from sparse MRI information

    Full text link
    Surface reconstruction from magnetic resonance (MR) imaging data is indispensable in medical image analysis and clinical research. A reliable and effective reconstruction tool should: be fast in prediction of accurate well localised and high resolution models, evaluate prediction uncertainty, work with as little input data as possible. Current deep learning state of the art (SOTA) 3D reconstruction methods, however, often only produce shapes of limited variability positioned in a canonical position or lack uncertainty evaluation. In this paper, we present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction. Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets whilst modelling the location of each mesh vertex through a Gaussian distribution. Prior shape information is encoded using a built-in linear principal component analysis (PCA) model. Extensive experiments on cardiac MR data show that our probabilistic approach successfully assesses prediction uncertainty while at the same time qualitatively and quantitatively outperforms SOTA methods in shape prediction. Compared to SOTA, we are capable of properly localising and orientating the prediction via the use of a spatially aware neural network.Comment: MICCAI 202

    Classification of First-Episode Schizophrenia Patients and Healthy Subjects by Automated MRI Measures of Regional Brain Volume and Cortical Thickness

    Get PDF
    BACKGROUND: Although structural magnetic resonance imaging (MRI) studies have repeatedly demonstrated regional brain structural abnormalities in patients with schizophrenia, relatively few MRI-based studies have attempted to distinguish between patients with first-episode schizophrenia and healthy controls. METHOD: Three-dimensional MR images were acquired from 52 (29 males, 23 females) first-episode schizophrenia patients and 40 (22 males, 18 females) healthy subjects. Multiple brain measures (regional brain volume and cortical thickness) were calculated by a fully automated procedure and were used for group comparison and classification by linear discriminant function analysis. RESULTS: Schizophrenia patients showed gray matter volume reductions and cortical thinning in various brain regions predominantly in prefrontal and temporal cortices compared with controls. The classifiers obtained from 66 subjects of the first group successfully assigned 26 subjects of the second group with accuracy above 80%. CONCLUSION: Our results showed that combinations of automated brain measures successfully differentiated first-episode schizophrenia patients from healthy controls. Such neuroimaging approaches may provide objective biological information adjunct to clinical diagnosis of early schizophrenia

    Mapping Connectivity Damage in the Case of Phineas Gage

    Get PDF
    White matter (WM) mapping of the human brain using neuroimaging techniques has gained considerable interest in the neuroscience community. Using diffusion weighted (DWI) and magnetic resonance imaging (MRI), WM fiber pathways between brain regions may be systematically assessed to make inferences concerning their role in normal brain function, influence on behavior, as well as concerning the consequences of network-level brain damage. In this paper, we investigate the detailed connectomics in a noted example of severe traumatic brain injury (TBI) which has proved important to and controversial in the history of neuroscience. We model the WM damage in the notable case of Phineas P. Gage, in whom a “tamping iron” was accidentally shot through his skull and brain, resulting in profound behavioral changes. The specific effects of this injury on Mr. Gage's WM connectivity have not previously been considered in detail. Using computed tomography (CT) image data of the Gage skull in conjunction with modern anatomical MRI and diffusion imaging data obtained in contemporary right handed male subjects (aged 25–36), we computationally simulate the passage of the iron through the skull on the basis of reported and observed skull fiducial landmarks and assess the extent of cortical gray matter (GM) and WM damage. Specifically, we find that while considerable damage was, indeed, localized to the left frontal cortex, the impact on measures of network connectedness between directly affected and other brain areas was profound, widespread, and a probable contributor to both the reported acute as well as long-term behavioral changes. Yet, while significantly affecting several likely network hubs, damage to Mr. Gage's WM network may not have been more severe than expected from that of a similarly sized “average” brain lesion. These results provide new insight into the remarkable brain injury experienced by this noteworthy patient

    The Human Connectome Project's neuroimaging approach

    Get PDF
    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease

    Divergent Cortical Generators of MEG and EEG during Human Sleep Spindles Suggested by Distributed Source Modeling

    Get PDF
    Background: Sleep spindles are,1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phaselocked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators. Methodology/Principal Findings: We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere. Conclusions/Significance: The heterogeneity of MEG sources implies that multiple generators are active during huma

    A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex

    Get PDF
    Visual input from the left and right visual fields is processed predominantly in the contralateral hemisphere. Here we investigated whether this preference for contralateral over ipsilateral stimuli is also found in high-level visual areas that are important for the recognition of objects and faces. Human subjects were scanned with functional magnetic resonance imaging (fMRI) while they viewed and attended faces, objects, scenes, and scrambled images in the left or right visual field. With our stimulation protocol, primary visual cortex responded only to contralateral stimuli. The contralateral preference was smaller in object- and face-selective regions, and it was smallest in the fusiform gyrus. Nevertheless, each region showed a significant preference for contralateral stimuli. These results indicate that sensitivity to stimulus position is present even in high-level ventral visual cortex
    corecore