84 research outputs found

    Constraining radio mode feedback in galaxy clusters with the cluster radio AGNs properties to z ∼ 1

    Get PDF
    We study the properties of the Sydney University Molonglo Sky Survey (SUMSS) 843 MHz radio active galactic nuclei (AGNs) population in galaxy clusters from two large catalogues created using the Dark Energy Survey (DES): ∼11 800 optically selected RM-Y3 and ∼1000 X-ray selected MARD-Y3 clusters. We show that cluster radio loud AGNs are highly concentrated around cluster centres to z ∼ 1. We measure the halo occupation number for cluster radio AGNs above a threshold luminosity, finding that the number of radio AGNs per cluster increases with cluster halo mass as N ∝ M1.2 ± 0.1 (N ∝ M0.68 ± 0.34) for the RM-Y3 (MARD-Y3) sample. Together, these results indicate that radio mode feedback is favoured in more massive galaxy clusters. Using optical counterparts for these sources, we demonstrate weak redshift evolution in the host broad-band colours and the radio luminosity at fixed host galaxy stellar mass. We use the redshift evolution in radio luminosity to break the degeneracy between density and luminosity evolution scenarios in the redshift trend of the radio AGNs luminosity function (LF). The LF exhibits a redshift trend of the form (1 + z⁠)γ in density and luminosity, respectively, of γD = 3.0 ± 0.4 and γP = 0.21 ± 0.15 in the RM-Y3 sample, and γD = 2.6 ± 0.7 and γP = 0.31 ± 0.15 in MARD-Y3. We discuss the physical drivers of radio mode feedback in cluster AGNs, and we use the cluster radio galaxy LF to estimate the average radio-mode feedback energy as a function of cluster mass and redshift and compare it to the core (<0.1R500) X-ray radiative losses for clusters at z < 1

    The PSZ-MCMF catalogue of Planck clusters over the des region

    Get PDF
    We present the first systematic follow-up of Planck Sunyaev–Zeldovich effect (SZE) selected candidates down to signal-to-noise (S/N) of 3 over the 5000 deg2 covered by the Dark Energy Survey. Using the MCMF cluster confirmation algorithm, we identify optical counterparts, determine photometric redshifts, and richnesses and assign a parameter, fcont, that reflects the probability that each SZE-optical pairing represents a random superposition of physically unassociated systems rather than a real cluster. The new PSZ-MCMF cluster catalogue consists of 853 MCMF confirmed clusters and has a purity of 90 per cent. We present the properties of subsamples of the PSZ-MCMF catalogue that have purities ranging from 90 per cent to 97.5 per cent, depending on the adopted fcont threshold. Halo mass estimates M500, redshifts, richnesses, and optical centres are presented for all PSZ-MCMF clusters. The PSZ-MCMF catalogue adds 589 previously unknown Planck identified clusters over the DES footprint and provides redshifts for an additional 50 previously published Planck-selected clusters with S/N>4.5. Using the subsample with spectroscopic redshifts, we demonstrate excellent cluster photo-z performance with an RMS scatter in Δz/(1 + z) of 0.47 per cent. Our MCMF based analysis allows us to infer the contamination fraction of the initial S/N>3 Planck-selected candidate list, which is ∼50 per cent. We present a method of estimating the completeness of the PSZ-MCMF cluster sample. In comparison to the previously published Planck cluster catalogues, this new S/N>3 MCMF confirmed cluster catalogue populates the lower mass regime at all redshifts and includes clusters up to z∼1.3

    Combining dark energy survey science verification data with near-infrared data from the ESO VISTA hemisphere survey

    Get PDF
    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint 7-band (grizYJKgrizYJK) photometric catalogues are produced in a single 3 sq-deg DECam field centred at 02h26m-04d36m where the availability of ancillary multi-wavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor of \sim4.5 relative to a simple catalogue level matching and results in a \sim1.5 mag increase in the 80\% completeness limit of the NIR data. Almost 70\% of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z1z1. We present example DES+VHS colour selection criteria for high redshift Luminous Red Galaxies (LRGs) at z0.7z\sim0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <<10\% contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5%<0.5\% contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS dataset, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.We thank the referee, Nicholas Cross, for a very useful report on this manuscript. MB acknowledges a postdoctoral fellowship via OL’s Advanced European Research Council Grant (TESTDE). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana- Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol ´ogico and the Minist´erio da Ciˆencia e Tecnologia, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratories, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi National Accelerator Laboratory, the University of Edinburgh, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, the Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit ¨at and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2009-13936, AYA2012- 39559, AYA2012-39620, and FPA2012-39684, which include FEDER funds from the European Union. We are grateful for the extraordinary contributions of our CTIO colleagues and the DES Camera, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management organisation. The analysis presented here is based on observations obtained as part of the VISTA Hemisphere Survey, ESO Progam, 179.A- 2010 (PI: McMahon) and data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 179.A-2006 (PI: Jarvis). Data for the OzDES spectroscopic survey were obtained with the Anglo-Australian Telescope (program numbers 12B/11 and 13B/12). Parts of this research were conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020. TMD acknowledges the support of the Australian Research Council through Future Fellowship, FT100100595.This is the final published version. It first appeared at http://mnras.oxfordjournals.org/content/446/3/2523.abstract

    A new RASS galaxy cluster catalogue with low contamination extending to z similar to 1 in the DES overlap region

    Get PDF
    We present the MARD-Y3 catalogue of between 1086 and 2171 galaxy clusters (52 per cent and 65 per cent new) produced using multicomponent matched filter (MCMF) follow-up in 5000 deg2 of DES-Y3 optical data of the ∼20 000 overlapping ROSAT All-Sky Survey source catalogue (2RXS) X-ray sources. Optical counterparts are identified as peaks in galaxy richness as a function of redshift along the line of sight towards each 2RXS source within a search region informed by an X-ray prior. All peaks are assigned a probability fcont of being a random superposition. The clusters lie at 0.02 <z< 1.1 with more than 100 clusters at z > 0.5. Residual contamination is 2.6 per cent and 9.6 per cent for the cuts adopted here. For each cluster we present the optical centre, redshift, rest frame X-ray luminosity, M500 mass, coincidence with NWAY infrared sources, and estimators of dynamical state. About 2 per cent of MARD-Y3 clusters have multiple possible counterparts, the photo-z’s are high quality with σ z/(1 + z) = 0.0046, and ∼1 per cent of clusters exhibit evidence of X-ray luminosity boosting from emission by cluster active galactic nuclei. Comparison with other catalogues (MCXC, RM, SPT-SZ, Planck) is performed to test consistency of richness, luminosity, and mass estimates. We measure the MARD-Y3 X-ray luminosity function and compare it to the expectation from a fiducial cosmology and externally calibrated luminosity- and richness–mass relations. Agreement is good, providing evidence that MARD-Y3 has low contamination and can be understood as a simple two step selection – X-ray and then optical – of an underlying cluster population described by the halo mass function

    Dark energy survey year 1 results: detection of intracluster light at redshift ∼ 0.25

    Get PDF
    International audienceUsing data collected by the Dark Energy Survey (DES), we report the detection of intracluster light (ICL) with ∼300 galaxy clusters in the redshift range of 0.2–0.3. We design methods to mask detected galaxies and stars in the images and stack the cluster light profiles, while accounting for several systematic effects (sky subtraction, instrumental point-spread function, cluster selection effects, and residual light in the ICL raw detection from background and cluster galaxies). The methods allow us to acquire high signal-to-noise measurements of the ICL and central galaxies (CGs), which we separate with radial cuts. The ICL appears as faint and diffuse light extending to at least 1 Mpc from the cluster center, reaching a surface brightness level of 30 mag arcsec−2. The ICL and the cluster CG contribute 44% ± 17% of the total cluster stellar luminosity within 1 Mpc. The ICL color is overall consistent with that of the cluster red sequence galaxies, but displays the trend of becoming bluer with increasing radius. The ICL demonstrates an interesting self-similarity feature—for clusters in different richness ranges, their ICL radial profiles are similar after scaling with cluster R 200m , and the ICL brightness appears to be a good tracer of the cluster radial mass distribution. These analyses are based on the DES redMaPPer cluster sample identified in the first year of observations

    Herbal supplements in the print media: communicating benefits and risks

    Get PDF
    Background The rise in use of food supplements based on botanical ingredients (herbal supplements) is depicted as part of a trend empowering consumers to manage their day-to-day health needs, which presupposes access to clear and accurate information to make effective choices. Evidence regarding herbal supplement efficacy is extremely variable so recent regulations eliminating unsubstantiated claims about potential effects leave producers able to provide very little information about their products. Medical practitioners are rarely educated about herbal supplements and most users learn about them via word-of-mouth, allowing dangerous misconceptions to thrive, chief among them the assumption that natural products are inherently safe. Print media is prolific among the information channels still able to freely discuss herbal supplements. Method This study thematically analyses how 76 newspaper/magazine articles from the UK, Romania and Italy portray the potential risks and benefits of herbal supplements. Results Most articles referenced both risks and benefits and were factually accurate but often lacked context and impartiality. More telling was how the risks and benefits were framed in service of a chosen narrative, the paucity of authoritative information allowing journalists leeway to recontextualise herbal supplements in ways that serviced the goals and values of their specific publications and readerships. Conclusion Providing sufficient information to empower consumers should not be the responsibility of print media, instead an accessible source of objective information is required.</p

    Characterizing the intracluster light over the redshift range 0.2 < z < 0.8 in the DES-ACT overlap

    Get PDF
    We characterize the properties and evolution of bright central galaxies (BCGs) and the surrounding intracluster light (ICL) in galaxy clusters identified in the Dark Energy Survey and Atacama Cosmology Telescope Survey (DES-ACT) overlapping regions, covering the redshift range 0.20 14.4. We also measure the stellar mass–halo mass (SMHM) relation for the BCG+ICL system and find that the slope, β, which characterizes the dependence of M200m,SZ on the BCG+ICL stellar mass, increases with radius. The outskirts are more strongly correlated with the halo than the core, which supports that the BCG+ICL system follows a two-phase growth, where recent growth (z < 2) occurs beyond the BCG’s core. Additionally, we compare our observed SMHM relation results to the IllustrisTNG300-1 cosmological hydrodynamic simulations and find moderate qualitative agreement in the amount of diffuse light. However, the SMHM relation’s slope is steeper in TNG300-1 and the intrinsic scatter is lower, likely from the absence of projection effects in TNG300-1. Additionally, we find that the ICL exhibits a colour gradient such that the outskirts are bluer than the core. Moreover, for the lower halo mass clusters (log10(M200m,SZ/M⊙) < 14.59), we detect a modest change in the colour gradient’s slope with lookback time, which combined with the absence of stellar mass growth may suggest that lower mass clusters have been involved in growth via tidal stripping more recently than their higher mass counterparts

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    Exploring the contamination of the DES-Y1 cluster sample with SPT-SZ selected clusters

    Get PDF
    We perform a cross validation of the cluster catalogue selected by the red-sequence Matched-filter Probabilistic Percolation algorithm (redMaPPer) in Dark Energy Survey year 1 (DES-Y1) data by matching it with the Sunyaev–Zel’dovich effect (SZE) selected cluster catalogue from the South Pole Telescope SPT-SZ survey. Of the 1005 redMaPPer selected clusters with measured richness λ̂ >40 in the joint footprint, 207 are confirmed by SPT-SZ. Using the mass information from the SZE signal, we calibrate the richness–mass relation using a Bayesian cluster population model. We find a mass trend λ ∝ MB consistent with a linear relation (B ∼ 1), no significant redshift evolution and an intrinsic scatter in richness of σλ = 0.22 ± 0.06. By considering two error models, we explore the impact of projection effects on the richness–mass modelling, confirming that such effects are not detectable at the current level of systematic uncertainties. At low richness SPT-SZ confirms fewer redMaPPer clusters than expected. We interpret this richness dependent deficit in confirmed systems as due to the increased presence at low richness of low-mass objects not correctly accounted for by our richness-mass scatter model, which we call contaminants. At a richness λ̂ =40 ⁠, this population makes up >12 per cent (97.5 percentile) of the total population. Extrapolating this to a measured richness λ̂ =20 yields >22 per cent (97.5 percentile). With these contamination fractions, the predicted redMaPPer number counts in different plausible cosmologies are compatible with the measured abundance. The presence of such a population is also a plausible explanation for the different mass trends (B ∼ 0.75) obtained from mass calibration using purely optically selected clusters. The mean mass from stacked weak lensing (WL) measurements suggests that these low-mass contaminants are galaxy groups with masses ∼3–5 × 1013 M⊙ which are beyond the sensitivity of current SZE and X-ray surveys but a natural target for SPT-3G and eROSITA

    The Observed Evolution of the Stellar Mass-Halo Mass Relation for Brightest Central Galaxies

    Get PDF
    We quantify evolution in the cluster-scale stellar mass–halo mass (SMHM) relation's parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range 0.03 ≤ z ≤ 0.60. The precision on the inferred SMHM parameters is improved by including the magnitude gap (mgap) between the BCG and fourth-brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for mgap, through a stretch parameter, reduces the SMHM relation's intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, mgap, and cluster mass (inferred from richness) between the data sets. We utilize the Pareto function to quantify each parameter's evolution. We confirm prior findings of negative evolution in the SMHM relation's slope (3.5σ), and detect negative evolution in the stretch parameter (4.0σ) and positive evolution in the offset parameter (5.8σ). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50 kpc, suggests that this evolution results from changes in the cluster's mgap. For this to occur, late-term growth must be in the intracluster light surrounding the BCG. We also compare the observed results to IllustrisTNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data
    corecore