2,305 research outputs found

    Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition.

    Get PDF
    An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, causing cellular toxicity, but the underlying mechanisms are largely unknown. Although often not considered, mitochondrial transport proteins form a significant class of potential mitochondrial off-targets. So far, most drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC), which exchanges cytosolic ADP for mitochondrial ATP. Here, we show inhibition of cellular respiratory capacity by only a subset of the 18 published AAC inhibitors, which questions whether all compound do indeed inhibit such a central metabolic process. This could be explained by the lack of a simple, direct model system to evaluate and compare drug-induced AAC inhibition. Methods: For its development, we have expressed and purified human AAC1 (hAAC1) and applied two approaches. In the first, thermostability shift assays were carried out to investigate the binding of these compounds to human AAC1. In the second, the effect of these compounds on transport was assessed in proteoliposomes with reconstituted human AAC1, enabling characterization of their inhibition kinetics. Results: Of the proposed inhibitors, chebulinic acid, CD-437 and suramin are the most potent with IC50-values in the low micromolar range, whereas another six are effective at a concentration of 100 μM. Remarkably, half of all previously published AAC inhibitors do not show significant inhibition in our assays, indicating that they are false positives. Finally, we show that inhibitor strength correlates with a negatively charged surface area of the inhibitor, matching the positively charged surface of the substrate binding site. Conclusion: Consequently, we have provided a straightforward model system to investigate AAC inhibition and have gained new insights into the chemical compound features important for inhibition. Better evaluation methods of drug-induced inhibition of mitochondrial transport proteins will contribute to the development of drugs with an enhanced safety profile

    {\eta} and {\eta}' mesons from Nf=2+1+1 twisted mass lattice QCD

    Full text link
    We determine mass and mixing angles of eta and eta' states using Nf=2+1+1 Wilson twisted mass lattice QCD. We describe how those flavour singlet states need to be treated in this lattice formulation. Results are presented for three values of the lattice spacing, a=0.061 fm, a=0.078 fm and a=0.086 fm, with light quark masses corresponding to values of the charged pion mass in a range of 230 to 500 MeV and fixed bare strange and charm quark mass values. We obtain 557(15)(45) MeV for the eta mass (first error statistical, second systematic) and 44(5) degrees for the mixing angle in the quark flavour basis, corresponding to -10(5) degrees in the octet-singlet basis.Comment: 28 pages, 9 figures, version to appear in JHEP, extended discussion of autocorrelation times and comparison to results available in the literature, added a comment for FS-effects and clarified the description of our blocking procedur

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    D-meson decay constants and a check of factorization in non-leptonic B-decays

    Get PDF
    We compute the vector meson decay constants fD*, fDs* from the simulation of twisted mass QCD on the lattice with Nf = 2 dynamical quarks. When combining their values with the pseudoscalar D(s)-meson decay constants, we were able (i) to show that the heavy quark spin symmetry breaking effects with the charm quark are large, fDs*/fDs = 1.26(3), and (ii) to check the factorization approximation in a few specific B-meson non-leptonic decay modes. Besides our main results, fD* = 278 \pm 13 \pm 10 MeV, and fDs* = 311 \pm 9 MeV, other phenomenologically interesting results of this paper are: fDs*/fD* = 1.16 \pm 0.02 \pm 0.06, fDs*/fD = 1.46 \pm 0.05 \pm 0.06, and fDs/fD* = 0.89 \pm 0.02 \pm 0.03. Finally, we correct the value for B(B0 \rightarrow D+ pi-) quoted by PDG, and find B(B0 \rightarrow D+ pi-) = (7.8 \pm 1.4) \times 10-7. Alternatively, by using the ratios discussed in this paper, we obtain B(B0 \rightarrow D+ pi-) = (8.3 \pm 1.0 \pm 0.8)\times10-7.Comment: 16 pages, 4 eps figure

    The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks

    Get PDF
    Measurements at appropriate spatial and temporal scales are essential for understanding and monitoring spatially heterogeneous environments with complex and highly variable emission sources, such as in urban areas. However, the costs and complexity of conventional air quality measurement methods means that measurement networks are generally extremely sparse. In this paper we show that miniature, low-cost electrochemical gas sensors, traditionally used for sensing at parts-per-million (ppm) mixing ratios can, when suitably configured and operated, be used for parts-per-billion (ppb) level studies for gases relevant to urban air quality. Sensor nodes, in this case consisting of multiple individual electrochemical sensors, can be low-cost and highly portable, thus allowing the deployment of scalable high-density air quality sensor networks at fine spatial and temporal scales, and in both static and mobile configurations.This work was supported by EPSRC (grant number EP/E002102/1) and the Department for Transport

    First report of generalized face processing difficulties in möbius sequence.

    Get PDF
    Reverse simulation models of facial expression recognition suggest that we recognize the emotions of others by running implicit motor programmes responsible for the production of that expression. Previous work has tested this theory by examining facial expression recognition in participants with Möbius sequence, a condition characterized by congenital bilateral facial paralysis. However, a mixed pattern of findings has emerged, and it has not yet been tested whether these individuals can imagine facial expressions, a process also hypothesized to be underpinned by proprioceptive feedback from the face. We investigated this issue by examining expression recognition and imagery in six participants with Möbius sequence, and also carried out tests assessing facial identity and object recognition, as well as basic visual processing. While five of the six participants presented with expression recognition impairments, only one was impaired at the imagery of facial expressions. Further, five participants presented with other difficulties in the recognition of facial identity or objects, or in lower-level visual processing. We discuss the implications of our findings for the reverse simulation model, and suggest that facial identity recognition impairments may be more severe in the condition than has previously been noted

    First-phase ejection fraction by CMR predicts outcomes in aortic stenosis

    Get PDF
    BACKGROUND: First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. METHODS: In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). RESULTS: Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. CONCLUSIONS: EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Atypical emotional anticipation in high-functioning autism

    Get PDF
    "Background: Understanding and anticipating others’ mental or emotional states relies on the processing of social cues, such as dynamic facial expressions. Individuals with high-functioning autism (HFA) may process these cues differently from individuals with typical development (TD) and purportedly use a ‘mechanistic’ rather than a ‘mentalistic’ approach, involving rule- and contingency-based interpretations of the stimuli. The study primarily aimed at examining whether the judgments of facial expressions made by individuals with TD and HFA would be similarly affected by the immediately preceding dynamic perceptual history of that face. A second aim was to explore possible differences in the mechanisms underpinning the perceptual judgments in the two groups. Methods: Twenty-two adults with HFA and with TD, matched for age, gender and IQ, were tested in three experiments in which dynamic, ‘ecologically valid’ offsets of happy and angry facial expressions were presented. Participants evaluated the expression depicted in the last frame of the video clip by using a 5-point scale ranging from slightly angry via neutral to slightly happy. Specific experimental manipulations prior to the final facial expression of the video clip allowed examining contributions of bottom-up mechanisms (sequential contrast/ context effects and representational momentum) and a top-down mechanism (emotional anticipation) to distortions in the perception of the final expression. Results: In experiment 1, the two groups showed a very similar perceptual bias for the final expression of joy-to-neutral and anger-to-neutral videos (overshoot bias). In experiment 2, a change in the actor’s identity during the clip removed the bias in the TD group, but not in the HFA group. In experiment 3, neutral-to-joy/anger-to-neutral sequences generated an undershoot bias (opposite to the overshoot) in the TD group, whereas no bias was observed in the HFA group. Conclusions: We argue that in TD individuals the perceptual judgments of other’s facial expressions were underpinned by an automatic emotional anticipation mechanism. In contrast, HFA individuals were primarily influenced by visual features, most notably the contrast between the start and end expressions, or pattern extrapolation. We critically discuss the proposition that automatic emotional anticipation may be induced by motor simulation of the perceived dynamic facial expressions and discuss its implications for autism.

    Fidelity Variants of RNA Dependent RNA Polymerases Uncover an Indirect, Mutagenic Activity of Amiloride Compounds

    Get PDF
    In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg2+ and Mn2+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis
    corecore