6 research outputs found

    Comparison of the Modulatory Effect on Intestinal Microbiota between Raw and Bran-Fried Atractylodis Rhizoma in the Rat Model of Spleen-Deficiency Syndrome

    No full text
    Atractylodis Rhizoma (AR), a kind of well-known traditional Chinese medicine (TCM), has a long history of being used to treat spleen-deficiency syndrome (SDS). Stir frying with bran is a common method of processing AR, as recorded in the Chinese Pharmacopoeia, and is thought to enhance the therapeutic effect in TCM. Our previous studies have confirmed that bran-fried AR is superior to raw AR in terms of the improvement of gastrointestinal tract function. However, the biological mechanism of action is not yet clear. Here, we report the difference between raw and bran-fried AR in terms of the modulatory effect of intestinal microbiota. We found that the composition of intestinal microbiota of SDS rats changed significantly compared with healthy rats and tended to recover to normal levels after treatment with raw and bran-fried AR. Nine bacteria closely related to SDS were identified at the genus level. Among them, the modulatory effect between the raw and bran-fried AR was different. The improved modulation on Bacteroides, Escherichia-Shigella, Phascolarctobacterium, Incertae-Sedis (Defluviitaleaceae Family) and Incertae-Sedis (Erysipelotrichaceae Family) could be the mechanism by which bran-fried AR enhanced the therapeutic effect. Correlation analysis revealed that the modulation on intestinal microbiota was closely related to the secretion and expression of cytokines and gastrointestinal hormones. These findings can help us to understand the role and significance of bran-fried AR against SDS

    Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope

    No full text
    Rainfall intensity and slope gradient are the main drivers of slope surface runoff and nitrogen loss. To explore the distribution of rainfall runoff and nitrogen loss on the Miyun Reservoir slopes, we used artificial indoor simulated rainfall experiments to determine the distribution characteristics and nitrogen migration paths of surface and subsurface runoff under different rainfall intensities and slope gradients. The initial runoff generation time of subsurface runoff lagged that of surface runoff, and the lag time under different rainfall intensity and slope conditions ranges from 3.97 to 12.62 min. Surface runoff rate increased with increasing rainfall intensity and slope gradient; compared with a rainfall intensity of 40 mm/h, at a slope of 15°, average surface runoff rate at 60 and 80 mm/h increased by 2.38 and 3.60 times, respectively. Meanwhile, the subsurface runoff rate trended upwards with increasing rainfall intensity, in the order 5 > 15 > 10°. It initially increased and then decreased with increasing slope gradient, in the order 5 > 10 > 15°. Total nitrogen (TN) loss concentration of surface runoff shows a decrease followed by a stabilization trend; the concentration of TN loss decreases with decreasing rainfall intensity, and the stabilization time becomes earlier and is most obvious in 5° slope conditions. TN loss concentration in subsurface runoff decreased with increasing rainfall intensity, i.e., 40 > 60 > 80 mm/h. The surface runoff rainfall coefficient was mainly affected by rainfall intensity, a correlation between αs and slope gradients S was not obvious, and the fitting effect was poor. The subsurface runoff rainfall coefficient was mainly affected by slope gradient, the R2 of all rainfall intensities was surface runoff > subsurface runoff. The surface and mixed runoff modulus increased significantly with increasing rain intensity under different rain intensities and slope gradients. Overall, rainfall intensity significantly affected slope surface runoff, and slope gradient significantly affected nitrogen loss
    corecore