218 research outputs found

    Anomaly Cancellation and Smooth Non-Kahler Solutions in Heterotic String Theory

    Get PDF
    We show that six-dimensional backgrounds that are T^2 bundle over a Calabi-Yau two-fold base are consistent smooth solutions of heterotic flux compactifications. We emphasize the importance of the anomaly cancellation condition which can only be satisfied if the base is K3 while a T^4 base is excluded. The conditions imposed by anomaly cancellation for the T^2 bundle structure, the dilaton field, and the holomorphic stable bundles are analyzed and the solutions determined. Applying duality, we check the consistency of the anomaly cancellation constraints with those for flux backgrounds of M-theory on eight-manifolds.Comment: 30 pages, harvmac; v2: typos corrected and minor clarifications adde

    A Case of Hypereosinophilic Syndrome Presenting With Multiorgan Infarctions Associated With Disseminated Intravascular Coagulation

    Get PDF
    Thromboembolism is one of the most critical complications of hypereosinophilic syndrome (HES). We report here a case of multi-organ infarctions related to HES. A 23-year-old woman was referred to our hospital with hemoptysis. Not only pulmonary, but also renal and splenic infarctions were detected on computed tomography images. Blood tests showed profound peripheral eosinophilia. She was diagnosed with HES with disseminated intravascular coagulation (DIC). We initiated infusion of corticosteroids, which effectively suppressed peripheral eosinophilia. However, consumptive coagulopathy did not improve and intracerebral hemorrhage related to thrombosis then developed. Addition of interferon-alpha resulted in the correction of the DIC associated with HES

    The Main Belt Comets and ice in the Solar System

    Get PDF
    We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies

    Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid

    Get PDF
    Small non-coding RNAs of 18–25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3′ end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1

    Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization

    Get PDF
    Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established

    The MOBILIZE Boston Study: Design and methods of a prospective cohort study of novel risk factors for falls in an older population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are the sixth leading cause of death in elderly people in the U.S. Despite progress in understanding risk factors for falls, many suspected risk factors have not been adequately studied. Putative risk factors for falls such as pain, reductions in cerebral blood flow, somatosensory deficits, and foot disorders are poorly understood, in part because they pose measurement challenges, particularly for large observational studies.</p> <p>Methods</p> <p>The MOBILIZE Boston Study (MBS), an NIA-funded Program Project, is a prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area. Using a door-to-door population-based recruitment, we have enrolled 765 persons aged 70 and older. The baseline assessment was conducted in 2 segments: a 3-hour home interview followed within 4 weeks by a 3-hour clinic examination. Measures included pain, cerebral hemodynamics, and foot disorders as well as established fall risk factors. For the falls follow-up, participants return fall calendar postcards to the research center at the end of each month. Reports of falls are followed-up with a telephone interview to assess circumstances and consequences of each fall. A second assessment is performed 18 months following baseline.</p> <p>Results</p> <p>Of the 2382 who met all eligibility criteria at the door, 1616 (67.8%) agreed to participate and were referred to the research center for further screening. The primary reason for ineligibility was inability to communicate in English. Results from the first 600 participants showed that participants are largely representative of seniors in the Boston area in terms of age, sex, race and Hispanic ethnicity. The average age of study participants was 77.9 years (s.d. 5.5) and nearly two-thirds were women. The study cohort was 78% white and 17% black. Many participants (39%) reported having fallen at least once in the year before baseline.</p> <p>Conclusion</p> <p>Our results demonstrate the feasibility of conducting comprehensive assessments, including rigorous physiologic measurements, in a diverse population of older adults to study non-traditional risk factors for falls and disability. The MBS will provide an important new data resource for examining novel risk factors for falls and mobility problems in the older population.</p

    Relativistic Binaries in Globular Clusters

    Get PDF
    Galactic globular clusters are old, dense star systems typically containing 10\super{4}--10\super{7} stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of hard binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct {\it N}-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.Comment: 88 pages, 13 figures. Submitted update of Living Reviews articl

    Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes

    Full text link
    corecore