2,274 research outputs found

    Anisotropically Shaped Magnetic/Plasmonic Nanocomposites for Information Encryption and Magnetic-Field-Direction Sensing.

    Get PDF
    Instantaneous control over the orientation of anisotropically shaped plasmonic nanostructures allows for selective excitation of plasmon modes and enables dynamic tuning of the plasmonic properties. Herein we report the synthesis of rod-shaped magnetic/plasmonic core-shell nanocomposite particles and demonstrate the active tuning of their optical property by manipulating their orientation using an external magnetic field. We further design and construct an IR-photoelectric coupling system, which generates an output voltage depending on the extinction property of the measured nanocomposite sample. We employ the device to demonstrate that the nanocomposite particles can serve as units for information encryption when immobilized in a polymer film and additionally when dispersed in solution can be employed as a new type of magnetic-field-direction sensor

    Topological Stable Rank of Nest Algebras

    Full text link
    We establish a general result about extending a right invertible row over a Banach algebra to an invertible matrix. This is applied to the computation of right topological stable rank of a split exact sequence. We also introduce a quantitative measure of stable rank. These results are applied to compute the right (left) topological stable rank for all nest algebras. This value is either 2 or infinity, and rtsr(T(N)) = 2 occurs only when N is of ordinal type less than omega^2 and the dimensions of the atoms grows sufficiently quickly. We introduce general results on `partial matrix algebras' over a Banach algebra. This is used to obtain an inequality akin to Rieffel's formula for matrix algebras over a Banach algebra. This is used to give further insight into the nest case

    Generalized parton distributions of the pion in a Bethe-Salpeter approach

    Get PDF
    We calculate generalized parton distribution functions in a field theoretic formalism using a covariant Bethe-Salpeter approach for the determination of the bound-state wave function. We describe the procedure in an exact calculation in scalar Electrodynamics proving that the relevant corrections outside our scheme vanish. We extend the formalism to the Nambu--Jona-Lasinio model, a realistic theory of the pion. We go in both cases beyond all previous calculations and discover that all important features required by general physical considerations, like symmetry properties, sum rules and the polynomiality condition, are explicitly verified. We perform a numerical study of their behavior in the weak and strong coupling limits.Comment: 19 pages, 21 eps figures, accepted for publication in EPJ

    Impact-parameter dependence of the generalized parton distribution of the pion in chiral quark models

    Get PDF
    We compute the off-forward diagonal non-singlet generalized parton distribution of the pion in two distinct chiral quark models: the Nambu-Jona-Lasinio model with the Pauli-Villars regulator and the Spectral Quark Model. The analysis is carried out in the impact-parameter space. Leading-order perturbative QCD evolution is carried out via the inverse Mellin transform in the index space. The model predictions agree very reasonably with the recent results from transverse-lattice calculations, reproducing qualitatively both the Bjorken-x and the impact-parameter dependence of the data.Comment: 13 pages, 3 figures, to appear in Phys. Lett.

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model

    Full text link
    Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large scale field growth to total magnetic helicity evolution best predict the saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2" LSDs in periodic boxes, the electromotive force driving LSD growth depends on the difference between the time-integrated kinetic and current helicity associated with fluctuations. When the system is helically kinetically forced (KF), the growth of the large scale helical field is accompanied by growth of small scale magnetic (and current) helicity which ultimately quench the LSD. Here, using both simulations and theory, we study the complementary magnetically forced(MF) case in which the system is forced with an electric field that supplies magnetic helicity. For this MF case, the kinetic helicity becomes the back-reactor that saturates the LSD. Simulations of both MF and KF cases can be approximately modeled with the same equations of magnetic helicity evolution, but with complementary initial conditions. A key difference between KF and MF cases is that the helical large scale field in the MF case grows with the same sign of injected magnetic helicity, whereas the large and small scale magnetic helicities grow with opposite sign for the KF case. The MF case can arise even when the thermal pressure is approximately smaller than the magnetic pressure, and requires only that helical small scale magnetic fluctuations dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in accretion discs and Babcock models of the solar dynamo are actually MF LSDs.Comment: 12 pages, 34 figure

    Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    Full text link
    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the Ninth International Conference on Inertial Fusion Sciences and Applications, IFSA 201

    Mode attraction, rejection and control in nonlinear multimode optics

    Full text link
    Novel fundamental notions helping in the interpretation of the complex dynamics of nonlinear systems are essential to our understanding and ability to exploit them. In this work we predict and demonstrate experimentally a fundamental property of Kerr-nonlinear media, which we name mode rejection and takes place when two intense counter-propagating beams interact in a multimode waveguide. In stark contrast to mode attraction phenomena, mode rejection leads to the selective suppression of a spatial mode in the forward beam, which is controlled via the counter-propagating backward beam. Starting from this observation we generalise the ideas of attraction and rejection in nonlinear multimode systems of arbitrary dimension, which paves the way towards a more general idea of all-optical mode control. These ideas represent universal tools to explore novel dynamics and applications in a variety of optical and non-optical nonlinear systems. Coherent beam combination in polarization-maintaining multicore fibres is demonstrated as example

    A Model for the Pion Structure Function

    Get PDF
    The pion structure function is investigated in a simple model, where pion and constituent quark fields are coupled through the simplest pseudoscalar coupling. The imaginary part of the forward gamma* pi-> gamma* pi scattering amplitude is evaluated and related to the structure functions. It is shown that the introduction of non-perturbative effects, linked to the size of the pion and preserving gauge invariance, allows a connection with the quark distribution. It is predicted that higher-twist terms become negligible for Q2 larger than about 2 GeV2 and that quarks in the pion have a momentum fraction smaller than in the proton case.Comment: 14 pages, 6 figures, LaTeX, elsart clas
    • …
    corecore