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Generalized parton distributions of the pion in a Bethe-Salpeter approach
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We calculate generalized parton distribution functions in a field theoretic formalism using a covari-
ant Bethe-Salpeter approach for the determination of the bound-state wave function. We describe
the procedure in an exact calculation in scalar Electrodynamics proving that the relevant correc-
tions outside our scheme vanish. We extend the formalism to the Nambu–Jona-Lasinio model, a
realistic theory of the pion. We go in both cases beyond all previous calculations and discover that
all important features required by general physical considerations, like symmetry properties, sum
rules and the polynomiality condition, are explicitly verified. We perform a numerical study of their
behavior in the weak and strong coupling limits.

PACS numbers: 24.10.Jv, 11.10.St, 13.40.Gp, 13.60.Fz

I. INTRODUCTION

Hard reactions provide important information for unveiling the structure of hadrons. The large virtuality, Q2, involved
in these processes allows the factorization of the hard (perturbative) and soft (non-perturbative) contributions in their
amplitudes. Therefore these reactions are receiving great attention by the hadronic physics community. Among the
hard processes, the Deeply Virtual Compton Scattering (DVCS) merits to be singled out, because it can be expressed,
in the asymptotic regime, in terms of the so called generalized parton distributions (GPDs) [1, 2, 3, 4]. The GPDs
describe non-forward matrix elements of light-cone operators and therefore measure the response of the internal
structure of the hadrons to the probes [5, 6, 7, 8]. There is much effort under way related to the measurement of
these functions.

Due to the impossibility at present to determine the GPDs from Quantum Chromodynamics directly, models have
been used to provide estimates which should serve to guide future experiments [9, 10, 11, 12, 13, 14]. The aim of
our work is to perform such a calculation in a field theoretic scheme which treats the bound-state in a fully covariant
manner following the Bethe-Salpeter approach. In this way we would like to preserve all invariances of the problem.
For simplicity we shall use mesons as initial and final states.

We define a scheme, to calculate the electro-magnetic interaction of hadrons, which separates the soft parts, where
we use a non perturbative treatment, and the hard parts, where the conventional perturbative treatment is applied.
The scheme preserves gauge invariance to leading order and leading twist.

In order to describe the soft part we start by using as a test of our ideas a model based on the φ4 field theory. This
theory has the advantage of being renormalizable and therefore any contribution can be analyzed properly. We show,
for example, that a correction to the hand bag contribution to first order in the strong coupling constant, which goes
beyond our scheme, vanishes.

We next proceed to the main development of this paper, namely to perform the study of the GPDs of the pion by
using the Nambu–Jona-Lasinio (NJL) model to describe its structure. The NJL model is not a toy model. In fact, it
is the most realistic model for the pion based on a quantum field theory built with quarks. It gives a good description
of the low energy physics of the pion and respects the realization of chiral symmetry [15]. Moreover it has been used
as the model to tune many coefficients of Chiral Perturbation Theory [16].

The NJL model is a non renormalizable field theory and therefore a cut-off procedure has to be defined. We have
chosen the Pauli-Villars regularization procedure because it respects all the symmetries of the problem. In our scheme,
we use the NJL model to describe the soft (non perturbative) part of the process, i.e. the initial and final states, while
for the hard part we use conventional perturbative QCD. The use of the NJL model allows to calculate the GPDs for
massive pions. Some peculiarities, as the non vanishing of the GPDs at the kinematic boundary regions, x = 0 and
x = 1, well known in the exact mπ = 0 limit, survive when mπ 6= 0.
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FIG. 1: Diagrams up to order g for the GPDs. The black dot indicates the scalar interaction vertex, while the white blob
indicates the effective quark – gauge-boson vertex.

Our paper is organized as follows. In section II we give some general definitions for scalar partons and we introduce
our kinematical variables. In section III and IV we will define our approach for the scalar and the NJL model
respectively. Section V presents our results and Section VI our conclusions.

II. GENERALIZED PARTON DISTRIBUTIONS

The GPDs are non-diagonal matrix elements of bi-local field operators. Various conventions, reference frames, vari-
ables, etc., have been used in the literature for the description of such objects. Our notation is represented in Fig. 1,
i.e., the initial momentum is labeled by P , the final momentum by P ′, and the momentum transfer is given by
∆ = P ′ − P . We shall describe initially a model with scalar particles, the generalization to particles with spin is
straightforward and will be outlined in a later section. The GPD of a scalar system is defined by the matrix elements
of bi-local scalar field operators [1, 2, 3, 4]:

J + ≡ 1

2

∫

dz−

2π
eixP+z− 〈P ′|Φ† (0)

↔

∂+Φ (z) |P 〉
∣

∣

∣

∣

z+=z⊥=0

= H(x, ζ, t), (1)

where x is the conventional Bjorken variable, ζ the so-called skewedness parameter, and
↔

∂ =
→

∂ −
←

∂ . The elastic
electromagnetic form factor of a system composed of two scalar particles is given by:

J+ ≡ 〈P ′|Φ† (0)
↔

∂+Φ (0) |P 〉 = (P + P ′)+ F (t). (2)

It follows directly from these definitions that integrating the GPD over x gives the form factor,

2

2 − ζ

∫

H(x, ζ, t) dx = F (t), (3)

where the dependence on the skewedness parameter ζ drops out. This result is an important constraint for any model
calculation.

Let us now present our notation. Any four vector vµ will be denoted (v+, v⊥, v−), where the light cone variables

are defined by v± = (v0 ± v3)/
√

2 and the transverse part v⊥ = (v1, v2). For the kinematics indicated in Fig. 1, we
introduce the ratios

x =
p+

P+
, ζ = −∆+

P+
(4)

of plus-components. With these definitions, which differ from other conventional ones [17, 18], both x and ζ are
defined on the interval [0, 1].

We are only going to consider elastic processes, so P 2 = P ′2 = M2 and ∆2 = t. The following relation is true in
general:

(

∆⊥ + ζP⊥
)2

= −ζ2M2 − (1 − ζ)t, (5)

the positivity of which implies an upper bound for the skewedness ζ at a given value of the momentum transfer t:

ζ ≤ (−t)/(2M2)
(

√

1 + 4M2/(−t) − 1
)

≤ 1.
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III. SCALAR ELECTRODYNAMICS

We begin our study with the simplest model which allows for a completely analytic solution of the Bethe-Salpeter
equation: this model describes a bound state of two distinguishable equal-mass scalar particles bound together by
a zero-range interaction. For later convenience, we choose only one of the constituent particles to be charged. Our
Lagrangian is,

L = [Dµφ]
†
[Dµφ] −m2φ†φ+

1

2
∂µχ∂

µχ− 1

2
m2χ2 − g

2

(

φ†φχ2
)

, (6)

with Dµ = ∂µ + ieAµ so that the electromagnetic charge only couples to the field φ. Assuming that the coupling
constant g is larger than a critical value, we have bound states stemming from the last term in Eq. (6). The
corresponding Bethe-Salpeter equation is trivially solved in the ladder approximation [19], providing the fully covariant
amplitude for the bound state of total mass M2 = P 2:

Φ(P, p) =
C

(p2 −m2 + iǫ)
(

(

P − p
)2 −m2 + iǫ

) , (7)

where p is the four-momentum of one of the two constituents with equal mass m, and C is a normalization constant.
The spectrum for the ground state in this model, can be obtained directly from the Bethe-Salpeter equation, and is
given by

1 = −igI2(P ), (8)

where the integral I2(P ) is given by Eq. (B2). Note that this integral is actually divergent, so some sort of renormal-
ization would be required in order to calculate the spectrum. The theory defined by Eq. (6) is renormalizable and a
renormalization program for bound states can be defined. However, for the evaluation of parton distribution functions
in this model, we do not encounter any divergent integrals, we shall therefore ignore any matters of renormalization.

The model defined by the above equations is certainly not realistic enough to furnish a reasonable description of real,
physical bound states, like the pion for instance. Its main advantage lies in its simplicity, the fact that one may obtain
analytic solutions, avoiding approximations that might destroy physical requirements or symmetries, like Lorentz- or
Gauge invariance, sum rules, etc. Moreover it has the added advantage that it is defined within a renormalizable
quantum field theory. These properties make it a useful playground to perform benchmark calculations, as it was
used recently in order to test the viability of certain relativistic quantum mechanics approaches [20, 21].

A. Generalized parton distribution function

Our starting point is to write the generalized parton distribution (GPD) as an integral over Bethe-Salpeter amplitudes.
To do so we could use Eq. (1), a procedure which we shall develop in the NJL case. However for completeness we
follow here the procedure of ref.[22, 23], which establishes a relation between the calculation of the GPD and that of
the electromagnetic form factor. Namely, in the scattering process γ∗+π → γ+π, the leading “hand-bag” diagram, in
the deep inelastic limit, reduces to a triangle diagram with an effective vertex (containing two-photon contributions),
resulting from the contraction of the propagator with infinite momentum (see first diagram in Fig. 1). Then,

H(x, ζ, t) = − i

2

∫

d4p

(2π)4
δ(p+ − xP+) Φ̄(P, p)(∆ + 2p)+

[

(P − p)2 −m2
]

Φ(P + ∆, p+ ∆)

=
2x− ζ

2

1

i

∫

d4p

(2π)4
δ(x− p+/P+) Φ̄(P, p)

[

(P − p)2 −m2
]

Φ(P + ∆, p+ ∆). (9)

Note that the adjoint Bethe-Salpeter amplitude Φ̄ is defined via an anti-chronological time ordering of field opera-
tors [19] as compared to Φ, which means that the infinitesimal part iǫ in Eq. (7) keeps the same sign as compared to
the mass term m2.

Using the Bethe-Salpeter amplitude of Eq. (7), we obtain

H(x, ζ, t) =
2x− ζ

2

C2

i

∫

d4p

(2π)4
δ(x− p+/P+)

(p2 −m2 + iǫ) [(p+ ∆)2 −m2 + iǫ] [(P − p)2 −m2 + iǫ]
. (10)
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Inspecting the pole structure of the integrand for the evaluation of the p− integral, we note that it vanishes unless
0 ≤ x ≤ 1, i.e., the GPDs have the correct support properties. The integral of Eq. (10) may be calculated explicitly.
The analytic result for the GPD is then simply

H(x, ζ, t) =
C2

16π2

2x− ζ

2
Ĩ3(m,x, ζ, t), 0 ≤ x ≤ 1, (11)

with Ĩ3(m,x, ζ, t) given by Eq. (B13). We observe that our result is explicitly covariant, depending only on x, ζ
and t. Note that the complete solution is explicitly continuous at x = ζ, however, the derivative at this point is
discontinuous. We furthermore encounter a zero at the point x = ζ/2, which is due to the photon vertex, see Eq. (9).
The quark distribution function is given by

q(x) ≡ H(x, 0, 0) =
C2

16π2

x(1 − x)

m2 − x(1 − x)M2
. (12)

The normalization integral may be done analytically and determines the normalization constant C.
As it is not a common practice to write GPDs as integrals over Bethe-Salpeter amplitudes, we note that we can

write H(x, ζ, t) for x > ζ as the product of light cone wave functions, defined by:

Ψ(x, p⊥) ≡ P+
√

x(1 − x)

iπ

∫

dp− Φ(P, p) = − C
√

x(1 − x)

(p⊥ − xP⊥)
2

+m2 − x(1 − x)M2
, (13)

which is non-zero only for 0 < x < 1. Using some kinematic relations, the GPD for x > ζ may then be written as

H(x, ζ, t)
∣

∣

∣

x>ζ
=

1

2

2x− ζ

2

1
√

x(x− ζ)

∫

d 2p⊥

(2π)3
Ψ∗
(

x− ζ

1 − ζ
, p⊥ +

1 − x

1 − ζ
∆⊥
)

Ψ
(

x, p⊥
)

. (14)

On the other hand, for x < ζ, the GPD may not directly be written as the product of light front wave functions like
in Eq. (14), even though we are still able to find analytic solutions for the integral of Eq. (10).

Another conventional way of writing GPDs is via a parameterization in form of double distributions [7]. The
relation of these double distributions and the associated D-term with the results of a scalar model similar to the one
considered here was recently discussed in ref. [22].

In Fig. 2 we give examples of GPDs in this model for different values of the binding energy and momentum transfers.
We distinguish two scenarios: i) the weak binding scenario M ≈ 2m (up to small binding energies of electromagnetic
magnitude); ii) the deep binding scenario, which we choose close to the chiral limit, M = mπ ≈ 140 MeV, for reasons
which will become natural in our later study of the Nambu–Jona-Lasinio model.

We checked numerically that the sum rule of Eq. (3) is always exactly satisfied. A more stringent test is the so-called
polynomiality condition [4], which states that the moments of the GPDs,

∫ 1

0

dx xN−1H(x, ζ, t) ≡ FN (ζ, t), (15)

give functions FN (ζ, t) that are polynomials in ζ of order not higher than N . It is difficult to verify this analytically
in the general case, even with the exact solutions that we obtained. Just in the limiting case M2 = 0, the following
relation may be shown to hold:

FN (ζ, 0) = 3
2N + (N − 2)

∑N

i=1 ζ
i

N(N + 1)(N + 2)
, (16)

i.e., the polynomiality condition is exactly satisfied at zero momentum transfer. Note also that for N = 1, Eq. (16)
gives the correct normalization of Eq. (3) for any value of ζ. This shows explicitly that the sum rule is indeed
independent of ζ in this case. For t 6= 0 and M2 6= 0 we have shown, by numerical integration, that the polynomiality
condition also holds (see appendix D).

In the small binding limit, M2 → 4m2, we recover the peaked nature of the GPDs, that was observed in ref. [23],
where also an interpretation was given. For small binding energies, the constituents are almost free, so their wave
function is highly peaked in momentum space. The two peaks at x = 1/2 and x = (1 + ζ)/2 correspond just to the
maxima of the corresponding wave function in the overlap formula Eq. (14). In the exact limit M = 2m, the GPDs
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FIG. 2: Generalized parton distributions in the scalar model for different values of the bound state mass M and momentum
transfers t. The top row gives results for t = −0.1 GeV2. The lower row those for t = −1 GeV2. The graphs follow the
scenarios discussed in the text: i) (weak binding, M ≈ 2m) left column and ii) (deep binding, M = mπ) right column. The
values of the third variable ζ are shown in the figures. Note that the sum rule of Eq. (3) is exactly satisfied for each graph.

reduce to a sum of two δ-functions1:

H(x, ζ, t) =
1

2

[

δ

(

x− 1

2

)

+ δ

(

x− ζ + 1

2

)]

2 − ζ

2
F (t). (17)

In particular, the quark distribution function q(x) = H(x, 0, 0) becomes simply q(x) = δ(x− 1/2), which means that
the particles are free.

In the deep binding limit, M = mπ, the GPDs change from the sharp peaks of the previous case to broad bumps
describing the Fermi motion of the deeply bound constituents. At zero momentum transfer, t = 0, we find the simple
form

H(x, ζ, 0) = 6
2x− ζ

2

{

x

ζ
θ (ζ − x) θ (x) +

1 − x

1 − ζ
θ (x− ζ) θ (1 − x)

}

. (18)

B. Electromagnetic form factor

Calculating the electromagnetic form factor according to Eq. (2), we find:

(P + P ′)µ F (Q2) = iC2

∫

d4p

(2π)4
(∆ + 2p)µ

(p2 −m2 + iǫ) [(p+ ∆)2 −m2 + iǫ] [(P − p)2 −m2 + iǫ]
, (19)

1 Note that the form factor in this limit is equal to zero everywhere except at t = 0, where it is 1.
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= + + = 0

FIG. 3: The second diagram of Fig. 1 contains the loop diagram shown on the left, which corresponds to the expanded set of
diagrams on the right, including the seagull term. All of them are divergent, but their sum is not. Moreover when we sum them
exactly also there finite parts vanish. The reason behind this cancellation is that the charge is not renormalized to order g.

leading to [21],

F (Q2) =
C2

16π2

∫ 1

0

dz
2

Q

1 − z√
D

log

√
D + zQ√
D − zQ

≡ 2

2 − ζ

∫ 1

0

dxH(x, ζ, t), (20)

with D = 4[m2 − z(1 − z)M2] + z2Q2. This suggests that one could calculate the GPD by a simple change of the
integration variable in the expression for the form factor. The general character of this change of variable would not
be clear, however. Naturally, at Q2 = 0 we reproduce the normalization condition.

Taking the parameters m = 241 MeV and M = 139 MeV, we can evaluate the root-mean squared radius of a “pion”
built of scalar particles, via 〈rπ〉2 = −6 ∂F (Q2)/∂Q2

∣

∣

Q2=0
= (0.47 fm)2, to be compared to the experimental value

of (0.66 fm)2. In the limit of a mass-less bound state, M = 0, we obtain the analytic result 〈rπ〉2 = 3/(10m2) =
(0.45 fm)2.

C. Bubble diagram and Gauge invariance

Up to first order in the strong coupling constant g, we have to calculate the second Feynman diagram of Fig. 1. In
scalar Electrodynamics, the second diagram does not contribute to the electromagnetic form factor. The loop integral
is proportional to

∫

d4q

(2π)4
(2q + ∆)µ

(q2 −m2 + iǫ) ((q + ∆)2 −m2 + iǫ)
, (21)

which by virtue of Eq. (B4) is zero. However, this diagram could contribute to the GPDs, because here we keep the
+ component of the integration variable fixed. In a naive way we observe that the bubble present in the diagram
will lead to divergent contributions to the GPDs. In order to understand properly the problem let us consider the
DVCS on the pion. Unfolding the procedure introduced in this section, we note that the bubble corresponds to a
triangle in which one of the propagators has been contracted due to the infinite momentum carried by the parton.
Divergences appear in the calculation and correspond in practice to terms proportional to log(Q2) in the triangle
diagram. Considering all contributions to the same order (see Fig. 3), we find that the divergences cancel. But not
only the divergent terms cancel, also the finite parts do, therefore the whole contribution, contrary to expectations,
vanishes exactly for the GPDs.

It is not difficult to advance a physical argument explaining this cancellation. The diagrams of Fig. 3 can be
interpreted as a renormalization of the bare charge present in the seagull term. Due to gauge symmetry this charge
must be the square of the charge associated to the one photon vertex, before and after renormalization. But we have
seen from Eq. (21) that there is no renormalization (finite or infinite) at order g to the charge. Consequently the sum
of diagrams of Fig. 3, or the second diagram of Fig. 1, must vanish.

IV. THE MODEL OF NAMBU AND JONA-LASINIO

The model of the last section can certainly not provide a very realistic description of electromagnetic properties of
a pion because of the scalar nature of the constituents involved. We are therefore going to consider a model with
spinor particles. An evident choice to investigate is the model of Nambu and Jona-Lasinio (NJL) [15, 24, 25, 26].
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This model is the most realistic model for pions built of quarks that is based on a quantum field theory. It gives a
good description of the low energy physics of the pion exhibiting the phenomena of dynamical mass generation and
spontaneous breaking of chiral symmetry, which are crucial ingredients for low-energy hadronic physics [15, 16].

We start from the Lagrangian density in the two-flavor version of this model where we add the electromagnetic
interaction in the usual way,

L = ψ̄(iD/ − µ0)ψ + g
[

(

ψ̄ψ
)2 −

(

ψ̄~τγ5ψ
)2
]

, (22)

with Dµ = ∂µ + ieAµ. Again, assuming the contact interaction of the last term to be mainly responsible for the
binding, the Bethe-Salpeter equation in ladder approximation to be fulfilled by a bound state in this model is given
by (the factor 2 comes from the symmetry of the interaction):

S−1(p) ~Φ(P, p)S−1(p− P ) = ig~τγ5

∫

2Tr
{

~τγ5 · ~Φ(P, p′)
} d4p′

(2π)4
. (23)

Here, the symbol Tr refers to traces on spinor, flavor and color indices, and S(p) is the single quark propagator

S(p) =
i

p/ −m+ iǫ
= i

p/ +m

p2 −m2 + iǫ
, (24)

of a quark with constituent mass m, which is generated from the bare mass µ0 via the gap equation Eq. (B9) [15, 26].
The quantity Φ(P, p) is the momentum space image of the Bethe-Salpeter amplitude of a bound state with total
four-momentum P , while p is the four-momentum of one of the constituents. The solution of Eq. (23) is rather trivial
since the integral on the right hand side is just a constant, so we can write

~Φ(P, p) = igπqqS(p)~τγ5S(p− P ) = −igπqq

(p/ +m)~τγ5(p/ − P/ +m)

(p2 −m2 + iǫ)[(P − p)2 −m2 + iǫ]
, (25)

where gπqq is the quark-pion coupling constant (given in Eq. (B11)) which can be determined from the usual Bethe-
Salpeter normalization condition [15]. Reinserting this solution into Eq. (23) gives a self-consistency condition, (given
in Eq. (B10)), which determines the mass of the ground state as a function of the coupling constant. Note that in
the chiral limit, when P 2 = 0 and µ0 = 0, Eq. (B10) is nothing but the gap equation (B9), providing some evidence
for the self-consistency of the procedure.

The NJL model has been investigated quite extensively in different domains of physics with rather impressive
success (see refs. [15, 26] for reviews), it is therefore natural to test its predictions for GPDs of the pion. Similar
studies have been carried out recently [7, 27, 28, 29, 30] with different models. One drawback of the NJL model
is of course its non-renormalizability, which makes it useful only as an effective, low-energy model that, however,
may be regarded as a non-linear realization of the QCD Lagrangian. Numerical results therefore usually depend on
the regularization scheme employed to deal with the divergent integrals. As thoroughly discussed in refs. [31, 32], a
suitable regularization method has to satisfy a certain number of requirements. The method that was found to be
most suitable was a Pauli-Villars with two subtractions, this is the one that we shall adopt, as outlined in appendix A.

A. Generalized parton distribution

We are interested in calculating the diagrams of Fig. 4 in the Nambu–Jona-Lasinio Model. A general expression for
the matrix element of the bi-local u-quark current in the Bethe-Salpeter approach is

〈

P ′ Ψ̄u(x′)γµΨu(x) P
〉

=

∫

d4x2Tr

{

Φ̄i
P ′(x′, x2)

1

2
(1 + τ3)γµ

[

Φi
P (x, x2)(i

←

/∂ (2) −m2)
]

}

+

∫

d4x1Tr

{

Φ̄i
P ′(x1, x)(i

→

/∂ (1) −m1)Φ
i
P (x1, x

′)
1

2
(1 + τ3)γµ

}

, (26)

where i is the isospin index. The first (second) term in this expression corresponds to the contribution of the first
(second) constituent of the system, and indices 1 and 2 refer to coordinates or operators related to particles 1 and 2,
bound in the meson. In terms of momentum variables we have

~ΦP (x1, x2) = e−iP ·X

∫

d4k

(2π)4
e−ikr~Φ (k, P ) , (27)
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P P ′p − P

p p + ∆

P P ′P + p

p p − ∆

FIG. 4: Diagrams contributing to the GPD in the Nambu–Jona-Lasinio Model.

with the center-of-mass and relative coordinates defined by

X = µ1x1 + µ2x2, r = x1 − x2, µ1,2 =
m1,2

m1 +m2
, (28)

and P = p1 + p2, k = µ2p1 − µ1p2 the total and relative four-momentum of the system.
We shall concentrate on the u-quark parton distribution in a π+ meson, for which we have to consider the first

diagram of Fig. 4, with p1 = p, p2 = P−p. The second diagram of Fig. 4 contributes to the d-quark parton distribution
with p1 = −p, p2 = P + p. Inserting Eq. (27) and taking m1 = m2 = m, the diagrams of Fig. 4 give the following
contribution to the GPDs:

1

2

∫

dz−

2π
eixP+z− 〈

P ′ Ψ̄u(0)γ+Ψu(z) P
〉

∣

∣

∣

∣

z+=z⊥=0

= H (x, ζ, t) =

=
1

2

∫

d4p

(2π)4
δ
(

x− p+/P+
)

Tr

{

Φ̄π+

(p+ P ′ − P, P ′)
1

2
(1 + τ3) γ

+Φπ+

(p, P )
(

/p− /P −m
)

}

, (29)

where we have switched back to particle momenta. With the Bethe-Salpeter amplitude of Eq. (25) we obtain an
expression for the GPD in the Nambu–Jona-Lasinio model that is similar to Eq. (10):

H(x, ζ, t) = i4Ncg
2
πqq

∫

d4p

(2π)4
δ(x− p+/P+)

(x+ 1 − ζ)(p2 −m2) + p · ∆ − xP · ∆ − (2x− ζ)p · P
(p2 −m2 + iǫ) [(p+ ∆)2 −m2 + iǫ] [(P − p)2 −m2 + iǫ]

. (30)

The p− integral in Eq. (30) is evaluated by the usual residue calculus. Due to the pole structure of the integrand
we obtain two contributions, the first one in the region ζ < x < 1, corresponding to the quark contribution and the
second in the region 0 < x < ζ, corresponding to a quark–anti-quark contribution. The second diagram of Fig. 4
will give an anti-quark contribution in the region ζ − 1 < x < 0, and a quark-antiquark contribution in the region
0 < x < ζ, just like the first diagram. In case of a π+ meson, the first diagram gives the u-quark distribution,
while the second one gives the d̄-quark distribution, but due to isospin symmetry, both distributions are related
by Hu(x, ζ, t) = −Hd̄(ζ − x, ζ, t). Concentrating only on the u-quark distribution and employing a Pauli-Villars
regularization, we get for ζ < x < 1:

H(x, ζ, t)
∣

∣

∣

ζ<x<1
=

Ncg
2
πqq

4π2

2
∑

j=0

cj

{

− log
m2

j

m2
− 1

2
log

m2
j − x̄M2

m2
j

− 1

2
log

m2
j − ȳM2

m2
j

+
(2x− ζ)M2 + (1 − x)t

2
Ĩ3(mj , x, ζ, t)

}

, (31)

with the abbreviations x̄ = x(1 − x), ȳ = (1 − x)(x − ζ)/(1 − ζ)2, while Ĩ3(m,x, ζ, t) is given by Eq. (B13) with
m = m0.

Turning our attention to the non-valence region, 0 < x < ζ, we find a first contribution arising from the diagram
of Fig. 4, which is given by

Ha(x, ζ, t)
∣

∣

∣

0<x<ζ
=

Ncg
2
πqq

4π2

2
∑

j=0

cj

{

− x

ζ
log

m2
j

m2
− 1

2
log

m2
j − x̄M2

m2
j

− 2x/ζ − 1

2
log

m2
j − ȳt

m2
j

+
(2x− ζ)M2 + (1 − x)t

2
Ĩ3(mj , x, ζ, t)

}

, (32)
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P P ′k − P

k k + ∆

p p + ∆

P P ′k + P

k k − ∆

p p + ∆

FIG. 5: Diagrams contributing to the GPDs in the Nambu–Jona-Lasinio model coming from the ”σ” coupling to the two
photons. They contribute in the region 0 < x < ζ.

where now ȳ = x(ζ − x)/ζ2. In the region 0 < x < ζ, there is a second contribution coming from the re-scattering
diagrams of Fig. 5. They correspond to the coupling of the two photons in a channel with the quantum numbers of
the σ meson. Although not apparent, their contribution is of the same order as the one from the diagrams in Fig. 4
(see appendix C for details of the calculation). The result for the sum of these two diagrams is

Hb(x, ζ, t)
∣

∣

∣

0<x<ζ
=
Ncg

2
πqq

4π2

(

1 − 2x

ζ

)

C (t)

2
∑

j=0

cj

[

− ln
m2

j

m2
− ln

m2
j − tȳ

m2
j

]

, (33)

with

C (t) = m2

[(

t− 2M2
)

I3 (P, P ′) + 2I2 (P − P ′)
]

M2 I2 (M2) + (4m2 − t) I2 (P − P ′)
, (34)

and ȳ = x(ζ − x)/ζ2.
In the exact chiral limit, M = mπ = 0 and mσ = 2m, Eq. (34) becomes

C (t) =
m2

(4m2 − t)

[

2 + t
I3 (P, P ′)

I2 (P − P ′)

]

, (35)

where the σ propagator appears in an explicit way. This propagator is also present in Eq. (34), but it is not so
apparent due to the more complicated structure of the equation. Thus we can speak effectively of a coupling of the
two photons to the σ state, and this contribution is a requirement of chiral symmetry.

The total value for the GPD in the region 0 < x < ζ is obtained by summing the two,

H(x, ζ, t)
∣

∣

∣

0<x<ζ
= Ha(x, ζ, t)

∣

∣

∣

0<x<ζ
+ Hb(x, ζ, t)

∣

∣

∣

0<x<ζ
. (36)

We note that the first three terms in curly brackets of Eq. (31) give contributions that are independent of the
momentum transfer t. The first term, in particular, gives an overall constant, independent of x, ζ and t, which does
not vanish for x = 1. From Eq. (31) we get the distribution function at zero momentum transfer,

q(x) = H(x, 0, 0) =
Ncg

2
πqq

4π2

2
∑

j=0

cj

{

− log
m2

j

m2
− log

m2
j − x̄M2

m2
j

+
m2

j

m2
j − x̄M2

}

, (37)

which is consistent with the normalization condition.
In Fig. 6 we give some examples of GPDs in the NJL model for different values of the binding energy and momentum

transfers. We distinguish in here three scenarios: i) the weak binding scenario M ≈ 2m (up to small binding energies
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of electromagnetic magnitude) ; ii) the deep binding scenario, with binding energies in the tens of MeV range, which
would correspond physically to a strongly bound state, i.e. like the ρ meson; iii) the Goldstone boson scenario, which
we take close to the chiral limit, M = mπ ≈ 140 MeV. This classification is very natural as the behavior of the GPDs
in the figures shows. The Goldstone boson scenario, with its flat GPDs, did not appear in scalar Electrodynamics
and it shows how spontaneous chiral symmetry breaking appears in the GPDs.

For zero binding, there is no spontaneous symmetry breaking, thus no pion, and the constituent quarks are quasi
free. For weak binding, we expect for the GPDs a similar behavior to the one discussed in scalar Electrodynamics.
This similarity can be seen by comparing the corresponding graphs of Figs. 2 and 6. In the weak binding limit we
note again the appearance of two peaks at x = 1/2 and x = (1 + ζ)/2, which go over into δ-functions in the exact
limit M = 2m, just as in the scalar case, see Eq. (17). As soon as there is binding the GPDs differ more and more
from the free ones as we approach the chiral M = mπ limit with massive constituent quarks.

A few properties of the final result may be recognized from the analytic expressions of the GPDs. First, the total
GPDs are discontinuous at x = ζ. The discontinuity arises from the diagrams in Fig. 5, since the contribution from
the diagrams in Fig. 4 to the GPDs is continuous, even though the derivative at x = ζ is not. Second, we see that
H(0, ζ, t) 6= 0 for any value of ζ. Its value, which depends on t and M but not on ζ, is connected to the discontinuity
by:

H (0, ζ, t) = H (ζ+, ζ, t) −H (ζ−, ζ, t) 6= 0 (38)

Third, as noted above, H(1, ζ, t) 6= 0. Its value is independent of t and ζ, and only depends on the bound state mass
M via the coupling constant gπqq. In particular, in the chiral limit, when M = 0, the value of H(x, ζ, t) at x = 1 is
simply given by:

H(1, ζ, t) = 1. (39)

Furthermore, the distribution functions become relatively more concentrated around x = 1 for large |t|, which is just
a consequence of the constant value of the distribution function at x = 1. Finally, in spite of these peculiarities, we
find again that Eq. (3) is always exactly satisfied, as we checked numerically.

The polynomiality condition in this case takes a very simple form in the chiral limit. When M = 0, the following
relation holds:

FN (ζ, 0) =
1

N

(

1 − 1

2
ζN

)

, (40)

i.e., at zero momentum transfer, the polynomiality condition is fulfilled. Again, for N = 1, Eq. (40) reproduces Eq. (3)
in the case t = 0. For t 6= 0 and M2 6= 0 we have shown, by numerical integration, that the polynomiality condition
also holds. Further details are given in appendix D.

The fact that the polynomiality condition holds both for SED and NJL in the present scheme should not be a
surprise since both models arise from a field theoretic description which preserves Lorentz symmetry, parity, time-
reversal invariance and hermiticity [4].

Finally we note that in the chiral limit, M = 0 and at zero momentum transfer, t = 0, we reproduce the analytic
results of ref. [7], namely:

H(x, ζ, 0) =
1

2
θ (ζ − x) θ (x) + θ (x− ζ) θ (1 − x) , (41)

so in particular, H(x, 1, 0) = 1/2 and H(x, 0, 0) = 1. It may be checked from Eq. (30) that this result is completely
independent of any regularization procedure. This form may be compared with the corresponding result in the scalar
model, see Eq. (18). Eq. (41) also implies that in the chiral limit we get a quark distribution function that is equal
to unity. This coincides with the results obtained in refs. [32, 33, 34].

B. Isospin decomposition

Following the idea of ref. [35] we introduce an isospin decomposition for the GPDs of the pion2

∫

dz−

2π
eixP+z− 〈

πa(P ′) Ψ̄f ′(0)γ+Ψf (z) πb(P )
〉∣

∣

z+=z⊥=0
= δabδf f ′HI=0 (x, ζ, t) + εabcτc

f f ′HI=1 (x, ζ, t) . (42)

2 Note that our notation is slightly different from the cited reference.
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FIG. 6: Generalized parton distributions in the Nambu–Jona-Lasinio model for different values of the bound state mass M

and momentum transfers t. The top row gives results for t = −0.1 GeV2, while on the bottom for t = −1 GeV2. We describe
from left to right the scenarios discussed in the text, i.e., from weak binding (M ≈ 2m, left column), to strong binding (middle
column) to the chiral limit (M = 0, right column). Note that the sum rule of Eq. (3) is exactly satisfied for each graph.

In order to extract the two isospin components we need to calculate the u-quark GPD for the π0. We have contributions
coming from both diagrams of Fig. 4 and from those of Fig. 5, leading to

Hπ0

u (x, ζ, t) =
1

2

[

H (x, ζ, t) −H (ζ − x, ζ, t)
]

, (43)

where H (x, ζ, t) is the u-quark GPD for the π+ defined in Eqs. (31) and (36). Here x ranges from ζ − 1 to 1, as has
been explained below Eq. (30). The GPDs of the π+ and π0 allow to extract the isospin components

HI=0 (x, ζ, t) = 2Hπ0

u (x, ζ, t) = H (x, ζ, t) −H (ζ − x, ζ, t)

HI=1 (x, ζ, t) = 2Hπ+

(x, ζ, t) − 2Hπ0

u (x, ζ, t) = H (x, ζ, t) + H (ζ − x, ζ, t) .
(44)

Using Eq. (41) we obtain simple expressions for the two isospin GPDs in the t = 0, mπ = 0 case:

HI=0 (x, ζ, t) =







−1, ζ − 1 < x < 0
0, 0 < x < ζ
1, ζ < x < 1

; HI=1 (x, ζ, t) = 1, ζ − 1 < x < 1. (45)

We observe that the predictions of ref. [35], regarding the isospin components in the limit mπ = 0, are satisfied. The
relation between HI=1 (x, ζ = 1, t = 0) and the wave function of the pion, ϕπ(x), and HI=0 (x, ζ = 1, t = 0) = 0 hold.
Note moreover that our pion wave function, in this limit, is ϕπ(x) = 1. The mπ = 0, ζ = 1 and t = 0 case corresponds

to a process in which the initial and final pion momenta are P =
(

P+,~0⊥, 0
)

and P ′ =
(

0,~0⊥, 0
)

, respectively. For

zero pion mass this process is allowed only as a limit. In the NJL model we can look for deviations from the exact
chiral limit.

C. Electromagnetic form factor

In order to understand better the above results, we may want to calculate the electromagnetic form factor in the
NJL model which is given by the x-integrated parton distribution, see Eq. (3). This has been done already in several
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works [15, 36, 37], but we want to investigate the relation with the present results. Calculating again the current we
find, from the first diagram of Fig. 1, for the form factor and for the GPDs:

(P + P ′)µ F (Q2) = 8iNcg
2
πqq

∫

d4p

(2π)4
(pµ + Pµ + ∆µ)(p2 −m2 + iǫ) + p · ∆Pµ − P · ∆ pµ − (2pµ + ∆µ) p · P

(p2 −m2 + iǫ) [(p+ ∆)2 −m2 + iǫ] [(P − p)2 −m2 + iǫ]
. (46)

Rewriting the denominator under the integral and using some relations of appendix B, we arrive at

F (Q2) = i2Ncg
2
πqq

(Q2/2 +M2)I2(∆) +M2I2(P ) −M4I3(∆,−P )

Q2/4 +M2
. (47)

We checked numerically (by applying the same Pauli-Villars regularization method) that this form factor is exactly
reproduced by integrating our result for the GPD over x. This means that the non-vanishing distribution functions
(at x = 1) are implicitly present in the result of Eq. (47). Note that in the chiral limit, M2 = 0, we simply have

F (Q2) = 4iNcg
2
πqqI2(∆) = 1 −R(Q2)/I2(0), (48)

where for small Q2, R(Q2) is given by

R(Q2) =
i

16π2

Q2

6m2
, (49)

so together with the relation f2
π = −12im2I2(0), we can evaluate the root-mean squared radius of the pion in this

model via 〈rπ〉2 = −6 ∂F (Q2)/∂Q2
∣

∣

Q2=0
= 3f−2

π /(4π2), which is the same as in ref. [15]. With fπ = 93 MeV, we find

the numerical value of 〈rπ〉2 = (0.585 fm)2, to be compared to the experimental value of (0.66 fm)2. Note, however,
that Eq. (49) is valid only in the limit when the cut-off goes to infinity, for the finite cut-off as specified in appendix A,
the root mean squared radius gets multiplied by a factor ∼ 0.89.

V. DISCUSSION

The results obtained in the scalar Electrodynamics model show a perfect realization of all wishful ingredients. The
calculation is exact, finite and satisfies all the desired properties, i.e., the GPDs have the correct support and vanish at
the boundary regions, while the sum rule and the polynomiality condition are exactly verified. From the physical point
of view, the GPDs show a realization in terms of quasi-free constituents in the weak binding limit. As the binding
increases one is confronted with the dynamics as derivable from a non trivial momentum distribution determined by
the corresponding Bethe-Salpeter amplitude, a feature also appearing in other model calculations [14]. The physical
effect associated with t and ζ is naturally represented in the GPDs. The variable t tends to push the constituent
distribution towards higher values of x, which corresponds to an input of momentum transfer into the system, while
the variable ζ incorporates the description of virtual pairs. Unfortunately this model is not very realistic for the pion
(perhaps it might be better fit for a description of the nucleon) and our results represent only qualitative features of
how the dynamics might influence the distributions.

An equivalent model was considered in refs. [23, 38], but the emphasis was put on the light-front quantization
method. The results were calculated only for x > ζ, while the region x < ζ was explored by an analytic continuation
of the vertex function. Due to the approximations used in their approach the continuation is not perfect and therefore
sum rules like the one appearing in Eq. (3) are explicitly violated.

For the NJL model the calculation requires regularization. The latter certainly influences the results, as has been
discussed in ref. [31], where the Pauli-Villars method was compared to the one of Brodsky-Lepage with different
results. The Pauli-Villars method is compatible with all the symmetry requirements [33], which is the reason for our
choice. A caveat that should be emphasized is that the model does not only contain the dynamics expressed in the
Lagrangian, but also the one derived from the regularization procedure.

The NJL calculation retains some nice properties, in particular it preserves the sum rule and the polynomiality
condition. Physically it is also very appealing since we can distinguish features associated with the weak and deep
binding regimes. In Fig. 7 we show the variation of the quark distribution function with the binding energy. As
the binding energy increases we change softly from a delta type behavior, at zero binding, to a constant behavior in
the strong binding regime. This figure also illustrates nicely the phase transition associated with the spontaneous
breaking of chiral symmetry. Suppose we keep the mass of the bound state fixed at M2 = 0 and consider the variation
of q(x) with the constituent mass m. It is clear that we will always have q(x) = 1 for any value of m, except when
m = 0, where the distribution function changes discontinuously to q(x) = δ(x− 1/2). The effects of t and ζ described
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FIG. 7: Quark distribution function q(x) = (x, 0, 0) in the Nambu–Jona-Lasinio model. The constituent mass is kept fixed at
m = 241 MeV.

for scalar Electrodynamics persist, as can be seen in the graph on the right hand side of this figure, i.e., t pushes the
distribution to higher values of x and ζ introduces virtual pairs into the description of the system.

Unexpected results of the calculation are the non-vanishing of the GPDs at the boundary, i.e., H(x, ζ, t) 6= 0 for
x = 1 and x = 0. This feature has nothing to do with what is usually called the support problem. The latter is
characterized by a non-vanishing distribution function outside the physical region, i.e. H(x, ζ, t) 6= 0 for x < ζ − 1
or x > 1, while in our calculations, the GPDs explicitly vanish there. It is therefore really a discontinuity that we
encounter at the physical boundary.

For the quark parton distribution q(x) = H(x, 0, 0), this peculiarity was already noted in refs. [32, 33, 34] and it is
obviously present in an implicit way in the results of electromagnetic form factor calculations [15, 36, 37]. It showed
up already in several model calculations [7, 39, 40, 41, 42].

Another peculiarity of the calculation is the discontinuity at the x = ζ. In the NJL model, the value of the GPD
at x = 0 and the discontinuity at x = ζ are related, as we have shown in Eq. (38), for any value of M , t and ζ. The
value of H (0, ζ, t) decreases as t increases or as the binding energy decreases. But the origin of the non zero value of
H (0, ζ, t) is in the σ diagrams depicted in Fig. 5, which originate from the scalar four-fermion coupling present in the
Lagrangian, Eq. (22).

Let us discuss the discontinuity at the boundaries further, within the NJL description. One might investigate the
mass dependence of the GPDs at a given point x. In our calculation we get for x = 1 the general expression

H(x = 1, ζ, t) =
F0

F0 − 1 +

(

√

4m2

M2 − 1 + 1
√

4m2

M2 −1

)

arctan

(

1
√

4m2

M2 −1

)

+ . . .

, (50)

where F0 = 16iπ2I2(0), with I2(p) given by Eq. (B6) and the dots denote small terms of higher order in M2/Λ2,
where Λ is the cut-off parameter in the Pauli-Villars regularization, see appendix A. This equation illustrates the
dependence on the bound state mass, and also the regularization scheme dependence through F0 is apparent. It is
clear from Eq. (50) that H(x = 1, ζ, t) vanishes for zero binding (M2 = 4m2) while it is non-vanishing, as soon as the
interaction binds the quarks into a pion, i.e. M2 < 4m2.

Moreover in the NJL model, for a small mass particle like the pion (M = mπ):

H(x = 1, ζ, t) =
gπqqfπ

mπ

+ O(mπ) + . . . = 1 + O(mπ) + . . . , (51)

where the last step follows from the Goldberger-Treiman relation as a consequence of spontaneously broken chiral
symmetry, and to lowest order in mπ this is regularization scheme independent.

The physical interpretation of these features is not completely clear at present. Let us however conjecture a solution
based on an analysis of known results. The usual idea that the parton distributions must vanish on the boundary
is based in the study of free parton models. If one of the partons carries all the + component of the momentum,
i.e. x = 1, the other one has p+ = 0 and thus p− goes to infinity if the particle is on shell. Since this p− enters
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the propagator, the obvious conclusion is that the parton distribution must vanish at this boundary. But this simple
description is broken when the particles are off-shell, like those in a bound system. Our result is therefore not unnatural
and does not contradict any physical intuitive ideas. Moreover, the fact that the distributions do not vanish at x = 0
for ζ = 0 is just a consequence of the non-vanishing at x = 1 and does not seem to introduce any new conceptual
problem.

One could suspect that this feature may originate as an artifact of the regularization in the NJL model, but this
suspicion should be immediately dropped since it occurs in some limits in a regularization independent way. Therefore
we conclude that there is a deeper physical reason for it, namely the off-shellness of the bound state quarks and the
realization of chiral symmetry3.

Up to now we have been discussing the NJL model as a theory in itself. However the true theory of the strong
interactions is QCD and the NJL model should be interpreted as an effective theory of QCD at low energies. QCD
based arguments led in refs. [7, 39] to define a modified NJL model with a momentum dependent constituent quark
mass (or equivalently, a constituent quark form factor) which, when appropriately chosen, makes the GPDs vanish at
the end points. In ref. [42] the emphasis was placed in the perturbative aspects, i.e., gluons and sea bremsstrahlung.
The QCD evolution equations [44] were used to eliminate the high momentum components. Certainly both mechanisms
should be simultaneously advocated.

VI. CONCLUSION

In this work, we presented a detailed calculation of generalized parton distribution functions using a covariant Bethe
- Salpeter approach both in scalar Electrodynamics and in the Nambu–Jona-Lasinio model. No assumptions have
gone into the determination of the Bethe - Salpeter amplitudes or any other ingredients of the calculation. The only
approximations employed are the ladder approximation for the determination of the Bethe - Salpeter bound state
amplitude (which is, of course, still a fully covariant object in this case), and in the determination of the current matrix
elements, we have restricted ourselves to the lowest order diagrams (but we have shown that the next order correction
vanishes exactly). As a result of this procedure, no important features required by general physical considerations,
like symmetry properties, sum rules, etc., have been violated and we recover them in our numerical results. For the
scalar model, the calculation evidences all desirable features, we reproduce the results obtained in similar studies,
extend them to other kinematical regions and find sum rules which were not possible in the other treatments.

In the case of the NJL model, we found that the realization of chiral symmetry plays a crucial role in the outcome
of the calculation. In the region 0 < x < ζ chiral symmetry intervenes explicitly through the contribution from
the scalar channel. In the region ζ < x < 1, where the σ does not contribute, it appears implicitly through the
consistency equations which govern the dynamics of the pion and its coupling to quarks. In the massive case, this
reflects in the fact that the GPDs do not vanish at the boundary of the kinematic region, i.e., at x = 0 and x = 1.
Our detailed analysis associates this feature with the off-shellness of the constituent quarks, and the specific value
there, with spontaneous chiral symmetry breaking. Moreover the GPDs are discontinuous at x = ζ, a consequence
of the σ channel contribution,i.e., also a requirement of the chiral symmetry realization. These behaviors have been
shown to arise in a regularization independent way.

In conclusion, we have shown that the SED model has continuous, well behaved GPDs that vanish at the end-points
of the kinematic region, and bubble diagrams which do not contribute as a consequence of gauge symmetry. On the
other hand, the NJL model has discontinuous, ill behaved GPDs, that are non-zero at the end-points, and bubble
diagrams which, in the σ channel, do contribute as a consequence of the realization of chiral symmetry.

Before finishing we must recall that our calculation is valid at the hadronic scale, i.e., at a low momentum renor-
malization point. Evolution to higher momenta is necessary to describe deep inelastic scattering data. It will be
interesting to see how the described features of the NJL model will change under evolution. However the fact that
the distributions do not vanish at the boundary imply the appearance of strong singularities which render the process
non trivial.

3 Similar features occur in the well defined ’t Hooft model [43], a theoretical scheme which is exact in the large Nc limit. In the chiral
limit, this model produces a parton distribution q(x) which is equal to 1 for any value of x, in a regularization independent way.
But, when chiral symmetry is explicitly broken, the model of ’t Hooft leads to a parton distribution which vanishes at the end-points,
q(x = 0) = q(x = 1) = 0. This different behavior is not surprising since the dynamics of this model and that of the NJL model are very
different. The ’t Hooft model is a 1+1 dimensional model, which is confining, but without a point-like interaction.
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APPENDIX A: REGULARIZATION

We have used the Pauli-Villars regularization in the Nambu–Jona-Lasinio model in order to render the occurring
integrals finite. This means that for integrals like the ones defined by Eqs. (B1-B3), we make the replacement

∫

d4p

(2π)4
f(p;m2) −→

∫

d4p

(2π)4

2
∑

j=0

cjf(p;m2
j), (A1)

with m2
j = m2 + jΛ2, c0 = −c1/2 = c2 = 1. Following ref. [15] we determine the regularization parameters Λ and m

by calculating the pion decay constant and the quark condensate in the chiral limit via

f2
π = −3m2

4π2

2
∑

j=0

cj log(m2
j/m

2), 〈ūu〉 = − 3m

4π2

2
∑

j=0

cjm
2
j log(m2

j/m
2). (A2)

With the conventional values 〈ūu〉 = −(250 MeV)3 and fπ = 93 MeV, we get m = 241 MeV and Λ = 859 MeV.

APPENDIX B: ELEMENTARY INTEGRALS

Some of the interesting integrals appearing in the main text are:

I1 ≡
∫

d4 k

(2π)4
1

k2 −m2 + iǫ
, (B1)

I2(p) ≡
∫

d4 k

(2π)4
1

(k2 −m2 + iǫ) ((k + p)2 −m2 + iǫ)
, (B2)

I3(p1, p2) ≡
∫

d4 k

(2π)4
1

(k2 −m2 + iǫ) ((k + p1)
2 −m2 + iǫ)((k + p2)

2 −m2 + iǫ)
, (B3)

From these definitions the following relation may be deduced:

∫

d4 k

(2π)4
kµ

(k2 −m2 + iǫ) ((k + p)2 −m2 + iǫ)
= −1

2
pµI2(p). (B4)

The scalar model is renormalizable. The NJL model is not. We use in the latter case the Pauli-Villars regularization
procedure and obtain:

I1 = − i

16π2

2
∑

j=0

cjm
2
j log(m2

j/m
2), (B5)

I2(p) = − i

16π2

2
∑

j=0

cj







log(m2
j/m

2) +

√

p2 − 4m2
j

p2
log

1 −
√

p2

p2−4m2
j

1 +
√

p2

p2−4m2
j







. (B6)
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From Eq. (B3) and p2
1 = p2

2 = M2 we have:

I3(p1, p2) = I3(t = (p1 − p2)
2
) = − i

16π2

2
∑

j=0

cj

∫ 1

0

dz
z
√

dj

ln

∣

∣

∣

∣

∣

ej +
√

dj

ej −
√

dj

∣

∣

∣

∣

∣

, (B7)

with

dj = t2z4 − 4z2t
(

m2
j +M2z (z − 1)

)

, ej = 2m2
j + 2M2z (z − 1) − z2t. (B8)

The self consistency relation determining the constituent mass of the quark, m, is

m = µ0 + 8 i g Nc Nf m I1, (B9)

while the equation for the mass of the pion , P 2 = M2, leads to

1 = 4 i g Nc Nf

[

2I1 − P 2I2 (P )
]

, (B10)

and the pion quark coupling constant , gπqq, is given by

g2
πqq =

−1

12i
(

I2 (M2) +M2 (∂I2 (p) /∂p2)p2=M2

) . (B11)

To obtain the results of Eqs. (11,31,32), we used the following formulas:

Ĩ2(P ) ≡ −16iπ2

∫

d4 k

(2π)4
δ (x− k+/P+)

(k2 −m2 + iǫ) ((k − P )2 −m2 + iǫ)
=











2
∑

j=0

cj log
m2

j − x̄P 2

m2
, 0 < x < 1,

0 otherwise.

(B12)

Ĩ3(m,x, ζ, t) ≡ −16iπ2

∫

d4 k

(2π)4
δ (x− k+/P+)

(k2 −m2 + iǫ) ((k + ∆)2 −m2 + iǫ) ((P − k)2 −m2 + iǫ)
=

=















1√
D

log
[2(1 − ζ)(ζy − x) − ζ]M2 − (1 − x)t+ 2m2/y +

√
D

[2(1 − ζ)(ζy − x) − ζ]M2 − (1 − x)t+ 2m2/y −
√
D
, 0 < x < 1,

0 otherwise.

(B13)

In the last integral, D = ζ2M2(M2−4m2)+(1−x)2t2 +2(1−x)(2x− ζ)M2t−4m2(1− ζ)t, ζ = −∆+/P+, M2 = P 2,
t = ∆2 and

y =

{

x/ζ, 0 < x < ζ,
(1 − x)/(1 − ζ), ζ < x < 1.

(B14)

APPENDIX C: CONTRIBUTION OF THE σ - DIAGRAMS

The contribution of the diagrams shown in Fig. 5 can be calculated as Hb (x, ζ, t) = A · B, with

A =
1

2

∫

d4p

(2π)
4 δ

(

x− p+

P+

)

Tr

[

iS (p) γ+ 1

2

(

1 + τ3
)

iS (p+ ∆)

]

(C1)

and

B =
2g2

πqqg

1 − 2gΠs (P − P ′)

∫

d4k

(2π)4
Tr
[

γ5τ
−S (k − P ) γ5τ

+S (k + ∆)S (k) + γ5τ
+S (k + P ′) γ5τ

−S (k + ∆)S (k)
]

,

(C2)
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where Πs is the scalar vacuum polarization:

Πs (P ) = −i
∫

d4p

(2π)
4 Tr [iS (p) iS (p− P )] = 4iNcNf

[

I1 +
1

2

(

4m2 − P 2
)

I2 (P )

]

. (C3)

After some algebra we obtain using Eq. (B10)

Hb (x, ζ, t) =
1

4π2
Ncg

2
πqqθ (ζ − x) θ (x)

(

1 − 2x

ζ

)

C (t)

2
∑

j=1

cj

[

− ln
m2

j

m2
− ln

m2
j − tȳ

m2
j

]

(C4)

with ȳ = x(ζ − x)/ζ2 and

C (t) = m2

[(

t− 2M2
)

I3 (P, P ′) + 2I2 (P − P ′)
]

M2 I2 (M2) + (4m2 − t) I2 (P − P ′)
, (C5)

which are Eqs. (33) and (34).

APPENDIX D: POLYNOMIALITY.

One stringent test of models is the polynomiality condition. This study appears simpler and more physical in terms
of the more symmetric variables [4]:

X =
x− ζ/2

1 − ζ/2
, ξ =

ζ

2 − ζ
. (D1)

With this definition X ranges from −1 to +1, and not from ζ − 1 to +1, which is the range associated with x. In
terms of these new variables the polynomiality condition is stated as [4]:

Hn (ξ, t) =

∫ +1

−1

dX Xn−1 H (X, ξ, t) =

[n
2 ]
∑

i=0

An,2i (t) ξ2i (D2)

where [...] means the integer part. Time reversal invariance and hermiticity imply that the distributions Hn (ξ, t) are
even functions of ξ [4].

For SED in the case mπ = 0 and t = 0, as function of the new variables, we have

H (X, ξ, 0) =

{

6
1+ξ

X(X+ξ)
2ξ

, −ξ < X < ξ
6

1+ξ

X(1−X)
1−ξ

, ξ < X < 1
(D3)

Using Eq. (D2) we obtain for the coefficients,

ASED
n,2i (0) =

6

(n+ 1) (n+ 2)
. (D4)

This simple closed form only appears for vanishing t and mπ. For non zero values we have to proceed numerically. In
table I we show values of ASED

n,2i (t) for the lowest values of n, and non vanishing t and mπ. These results show that

ASED
n,2i (t) are not anymore independent of i. We also obtain that the effect of a physical pion mass is small, i.e. at the

level of a few percent.
The definition of the coefficients in Eq. (D4) leads to the following relation for their sum, which is connected with

the value of the moments (D2) at ξ = 1,

H2m−1 (1, 0) = H2m (1, 0) , (D5)

with m = 1, 2, ... We have verified numerically (with a precision of 10−13) that this relation is also exactly satisfied
for t 6= 0 and mπ = 0:

H2m−1 (1, t) =

m−1
∑

i=0

ASED
2m−1,2i (t) = H2m (1, t) =

m
∑

i=0

ASED
2m,2i (t) , (D6)
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For mπ 6= 0 the maximum value of ξ never reaches 1 and therefore we cannot connect the sum of the An,2i coefficients
with the value of the moment at any physical value of ξ. Our numerical study shows however that, in the case of
SED, we have an approximate sum rule for the sum of coefficients An,2i:

m−1
∑

i=0

ASED
2m−1,2i (t) −

m
∑

i=0

ASED
2m,2i (t) ≃ O

(

m2
π

)

(D7)

The deviation from the exact sum rule is at the level of one percent for t = −10−5 GeV2 (−t small) and at the level
of 10−3 for t = −10 GeV2 (−t large).

We now turn to the NJL model. As in the SED case, we start from the parton distribution for t = 0 and mπ = 0:

H (X, ξ, 0) =
1

2
θ (ξ −X) θ (ξ +X) + θ (X − ξ) θ (1 −X) (D8)

Inserting Eq (D8) in Eq. (D2) and integrating over X we obtain the coefficients,

ANJL
n,0 (0) =

1

n
,

ANJL
n,2i (0) = 0, 1 ≤ 2i ≤ n− 1, (D9)

ANJL
n,n (0) =

−1

n
δ[ n

2
], n

2
.

In this case, the closed forms appear only for vanishing values of mπ and t. Results for t 6= 0 and mπ 6= 0 have
been obtained numerically and are shown in table I. From these results we realize that ANJL

n,2i (t) are not zero for
1 ≤ 2i ≤ n− 1. We also observe that the effect of a physical pion mass is small.

We have found also several simple relations like

H2m (1, 0) = 0, H2m+1 (1, 0) = H2m+1 (0, 0) , (D10)

with m = 1, 2.... But in this case these relations are only approximately satisfied for t 6= 0 and mπ = 0 or for mπ 6= 0.
We have studied numerically the contributions to Hn (ξ, t) coming from each diagram separately. We observe that

there are independent sum rules for each diagram but they disappear when the sum is performed. The contribution
coming from the diagram in Fig. 4 verifies the relation

m
∑

i=0

ANJL
2m,2i (t) −

m
∑

i=0

ANJL
2m+1,2i (t) = O

(

m2
π

)

(D11)

exactly for m = 0 and any t, and in an approximate way (deviations less than 10−3) for mπ = 140MeV. On the other
hand, the diagram in Fig. 5 gives non-vanishing contributions only to the coefficients ANJL

n,n for any value of mπ and
any value of t.

Regarding the numerical values of these coefficients we observe that in the scalar model and for large n, Hn (0, 0)
decreases with n as 1/n2 whereas Hn (1, 0) decreases with n as 1/n, showing that H (X, 1, 0) is more concentrated
around X = 1 than H (X, 0, 0). In the NJL case for large n, Hn (0, 0) and Hn (1, 0) decrease as 1/n. This shows that
H (X, ξ, 0) is more concentrated around the X = 1 region than in the scalar case. These asymptotic behaviors appear
for any value of t and mπ.

The numerical analysis also shows that for small n, as −t increases, the coefficients of the SED and NJL models
are of the same order, loosing the characteristic behavior of equations (D4) and (D9). Nevertheless we observe a
regularity in the signs: all the coefficients are positive in the scalar model, whereas in the NJL model the coefficients
An,0 are positive but the rest are negative, except some small coefficients present at small −t.

Finally we recall that A1,0 (0) = 1 corresponds to the charge sum rule and A2,0 (0) = 1/2 is related to the momentum
sum rule.
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