8,792 research outputs found

    A Model for the Pion Structure Function

    Get PDF
    The pion structure function is investigated in a simple model, where pion and constituent quark fields are coupled through the simplest pseudoscalar coupling. The imaginary part of the forward gamma* pi-> gamma* pi scattering amplitude is evaluated and related to the structure functions. It is shown that the introduction of non-perturbative effects, linked to the size of the pion and preserving gauge invariance, allows a connection with the quark distribution. It is predicted that higher-twist terms become negligible for Q2 larger than about 2 GeV2 and that quarks in the pion have a momentum fraction smaller than in the proton case.Comment: 14 pages, 6 figures, LaTeX, elsart clas

    A Novel Non-Intrusive Method to Resolve the Thermal-Dome-Effect of Pyranometers: Radiometric Calibration and Implications

    Get PDF
    Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile's output voltage; therefore only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer's thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a-few-percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST-traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and non-linearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol's direct-radiative effect using field measurements with and without considering the pyranometer's thermal effect. The results of radiative transfer model simulation show that a pyranometer's thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere

    Exact solvability of potentials with spatially dependent effective masses

    Full text link
    We discuss the relationship between exact solvability of the Schroedinger equation, due to a spatially dependent mass, and the ordering ambiguity. Some examples show that, even in this case, one can find exact solutions. Furthermore, it is demonstrated that operators with linear dependence on the momentum are nonambiguous.Comment: 12 page

    Banner News

    Get PDF
    https://openspace.dmacc.edu/banner_news/1157/thumbnail.jp

    Abrupt formation of intracardiac thrombus during cardiopulmonary bypass with full heparinization -A case report-

    Get PDF
    Intracardiac thrombus during cardiopulmonary bypass (CPB) with full heparinization is very rare but fatal. A 60-year-old woman was scheduled for aortic and mitral valve repairs with a maze procedure for mixed aortic and mitral valvular heart disease with atrial fibrillation. Preoperative transthoracic echocardiography and cardiac computed tomography showed moderate aortic regurgitation and moderate mitral stenosis with regurgitation. There was no intracardiac thrombus. Aortic and mitral valve repairs with the maze procedure were successfully performed without unexpected events. During CPB weaning, a mobile hyper-echogenic mass in the left atrium was detected on transesophageal echocardiography. After cardiac arrest, it was surgically removed. On completion of the operation, weaning from CPB was accomplished uneventfully. The patient fully recovered and was discharged from the intensive care unit on her third postoperative day

    The NIH-NIAID Schistosomiasis Resource Center

    Get PDF
    A bench scientist studying schistosomiasis must make a large commitment to maintain the parasite's life cycle, which necessarily involves a mammalian (definitive) host and the appropriate species of snail (intermediate host). This is often a difficult and expensive commitment to make, especially in the face of ever-tightening funds for tropical disease research. In addition to funding concerns, investigators usually face additional problems in the allocation of sufficient lab space to this effort (especially for snail rearing) and the limited availability of personnel experienced with life cycle upkeep. These problems can be especially daunting for the new investigator entering the field. Over 40 years ago, the National Institutes of Health–National Institute of Allergy and Infectious Diseases (NIH-NIAID) had the foresight to establish a resource from which investigators could obtain various schistosome life stages without having to expend the effort and funds necessary to maintain the entire life cycle on their own. This centralized resource translated into cost savings to both NIH-NIAID and to principal investigators by freeing up personnel costs on grants and allowing investigators to divert more funds to targeted research goals. Many investigators, especially those new to the field of tropical medicine, are only vaguely, if at all, aware of the scope of materials and support provided by this resource. This review is intended to help remedy that situation. Following a short history of the contract, we will give a brief description of the schistosome species provided, provide an estimate of the impact the resource has had on the research community, and describe some new additions and potential benefits the resource center might have for the ever-changing research interests of investigators

    Observation of Coherent Elastic Neutrino-Nucleus Scattering

    Full text link
    The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset

    Gradient microfluidics enables rapid bacterial growth inhibition testing

    Get PDF
    Bacterial growth inhibition tests have become a standard measure of the adverse effects of inhibitors for a wide range of applications, such as toxicity testing in the medical and environmental sciences. However, conventional well-plate formats for these tests are laborious and provide limited information (often being restricted to an end-point assay). In this study, we have developed a microfluidic system that enables fast quantification of the effect of an inhibitor on bacteria growth and survival, within a single experiment. This format offers a unique combination of advantages, including long-term continuous flow culture, generation of concentration gradients, and single cell morphology tracking. Using Escherichia coli and the inhibitor amoxicillin as one model system, we show excellent agreement between an on-chip single cell-based assay and conventional methods to obtain quantitative measures of antibiotic inhibition (for example, minimum inhibition concentration). Furthermore, we show that our methods can provide additional information, over and above that of the standard well-plate assay, including kinetic information on growth inhibition and measurements of bacterial morphological dynamics over a wide range of inhibitor concentrations. Finally, using a second model system, we show that this chip-based systems does not require the bacteria to be labeled and is well suited for the study of naturally occurring species. We illustrate this using Nitrosomonas europaea, an environmentally important bacteria, and show that the chip system can lead to a significant reduction in the period required for growth and inhibition measurements (<4 days, compared to weeks in a culture flask)
    • …
    corecore