9,815 research outputs found
Heterogeneous mantle source and magma differentiation of quaternary arc-like volcanic rocks from Tengchong, SE margin of the Tibetan Plateau
The Tengchong volcanic field north of the Burma arc comprises numerous Quaternary volcanoes in the southeastern margin of the Tibetan Plateau. The volcanic rocks are grouped into four units (1-4) from the oldest to youngest. Units 1, 3 and 4 are composed of olivine trachybasalt, basaltic trachyandesite and trachyandesite, and Unit 2 consists of hornblende dacite. The rocks of Units 1, 3, and 4 form a generally alkaline suite in which the rocks plot along generally linear trends on Harker diagrams with only slight offset from unit to unit. They contain olivine phenocrysts with Fo values ranging from 65 to 85 mol% and have Cr-spinel with Cr# ranging from 23 to 35. All the rocks have chondrite-normalized REE patterns enriched in LREE and primitive mantle-normalized trace element patterns depleted in Ti, Nb and Ta, but they are rich in Th, Ti and P relative to typical arc volcanics. Despite minor crustal contamination, 87Sr/ 86Sr ratios (0.706-0.709), εNd values (-3.2 to -8.7), and εHf values (+4.8 to -6.4) indicate a highly heterogeneous mantle source. The Pb isotopic ratios of the lavas ( 206Pb/ 204Pb = 18.02-18.30) clearly show an EMI-type mantle source. The underlying mantle source was previously modified by subduction of the Neo-Tethyan oceanic and Indian continental lithosphere. The present heterogeneous mantle source is interpreted to have formed by variable additions of fluids and sediments derived from the subducted Indian Oceanic lithosphere, probably the Ninety East Ridge. Magma generation and emplacement was facilitated by transtensional NS-trending strike-slip faulting. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 28 May 201
Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC
In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material
Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database
Radiologists in their daily work routinely find and annotate significant
abnormalities on a large number of radiology images. Such abnormalities, or
lesions, have collected over years and stored in hospitals' picture archiving
and communication systems. However, they are basically unsorted and lack
semantic annotations like type and location. In this paper, we aim to organize
and explore them by learning a deep feature representation for each lesion. A
large-scale and comprehensive dataset, DeepLesion, is introduced for this task.
DeepLesion contains bounding boxes and size measurements of over 32K lesions.
To model their similarity relationship, we leverage multiple supervision
information including types, self-supervised location coordinates and sizes.
They require little manual annotation effort but describe useful attributes of
the lesions. Then, a triplet network is utilized to learn lesion embeddings
with a sequential sampling strategy to depict their hierarchical similarity
structure. Experiments show promising qualitative and quantitative results on
lesion retrieval, clustering, and classification. The learned embeddings can be
further employed to build a lesion graph for various clinically useful
applications. We propose algorithms for intra-patient lesion matching and
missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde
Hepatitis B Virus Genotyping Among Chronic Hepatitis B Individuals With Resistance to Lamivudine in Shahrekord, Iran
Background: Hepatitis B infection, caused by hepatitis B Virus (HBV), is one of the major global public health problems. Hepatitis B Virus genotypes appear to show varying geographic distribution with possible pathogenic and therapeutic differences. Knowledge of HBV genotypes is very important for clinical treatment. Lamivudine is a nucleoside analogue that is clinically used to treat chronic hepatitis B infection. However, the main problem with the application of lamivudine is the development of viral resistance to the treatment with this anti viral drug. Besides, it has been suggested that lamivudine-resistant HBV may be genotype dependent. However, HBV genotype distribution and the biological relevance in this region are poorly understood. Objectives: The current study aimed to determine hepatitis B genotypes and their correlation with lamivudine-resistant HBV frequency among patients with chronic hepatitis B from Shahrekord, Iran. Methods and Materials: Hepatitis B virus DNA was detected by conventional PCR in some of the serum samples obtained from HBsAg-positive Chronic Hepatitis B (CHB) patients who were referred to Health Centers of Shahrekord for routine monitoring of the disease. Subsequently, using real-time PCR, the DNA samples were used for genotyping and analysis of resistance to lamivudine. Results: The DNA was detected in 23 out of 116 (19.82%) of the studied samples. Genotypes D and C were found in 17 out of 23 (73.9%), and in 6 out of 23 (26.1%) of the samples, respectively. To the authors' best knowledge, the current study is the first report on isolation of Genotype C from Iran. Two out of 17 (11.76%), and 6 out of 6 (100%) of genotypes D and C were resistant to lamivudine, respectively. Resistance to this drug was significantly different between genotypes C and D (P < 0.001). Conclusions: In addition to genotype D, other lamivudine resistant hepatitis B genotypes might be distributed in Iran
Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands
"© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature
Graphene has emerged as the foremost material for future two-dimensional
spintronics due to its tuneable electronic properties. In graphene, spin
information can be transported over long distances and, in principle, be
manipulated by using magnetic correlations or large spin-orbit coupling (SOC)
induced by proximity effects. In particular, a dramatic SOC enhancement has
been predicted when interfacing graphene with a semiconducting transition metal
dechalcogenide, such as tungsten disulphide (WS). Signatures of such an
enhancement have recently been reported but the nature of the spin relaxation
in these systems remains unknown. Here, we unambiguously demonstrate
anisotropic spin dynamics in bilayer heterostructures comprising graphene and
WS. By using out-of-plane spin precession, we show that the spin lifetime
is largest when the spins point out of the graphene plane. Moreover, we observe
that the spin lifetime varies over one order of magnitude depending on the spin
orientation, indicating that the strong spin-valley coupling in WS is
imprinted in the bilayer and felt by the propagating spins. These findings
provide a rich platform to explore coupled spin-valley phenomena and offer
novel spin manipulation strategies based on spin relaxation anisotropy in
two-dimensional materials
Photoconductivity of biased graphene
Graphene is a promising candidate for optoelectronic applications such as
photodetectors, terahertz imagers, and plasmonic devices. The origin of
photoresponse in graphene junctions has been studied extensively and is
attributed to either thermoelectric or photovoltaic effects. In addition, hot
carrier transport and carrier multiplication are thought to play an important
role. Here we report the intrinsic photoresponse in biased but otherwise
homogeneous graphene. In this classic photoconductivity experiment, the
thermoelectric effects are insignificant. Instead, the photovoltaic and a
photo-induced bolometric effect dominate the photoresponse due to hot
photocarrier generation and subsequent lattice heating through electron-phonon
cooling channels respectively. The measured photocurrent displays polarity
reversal as it alternates between these two mechanisms in a backgate voltage
sweep. Our analysis yields elevated electron and phonon temperatures, with the
former an order higher than the latter, confirming that hot electrons drive the
photovoltaic response of homogeneous graphene near the Dirac point
The Influence of Waste Glass Powder on the Chloride Binding Capacity of Fly Ash/Cement hardened paste
The potential of using waste glass powder to increase the chloride binding capacity of fly ash/cement hardened paste was investigated. When only fly ash replacing cement, the chloride binding capacity was raised within 28d when the fly ash replacement level was in the range from 30-50% by mass. But at a longer age of 60 to 90d, the binding performance was increased at the replacement level of 10-30wt%. The chloride binding capacity of glass powder-fly ash-cement system was increased by adding glass powder of 2% and 4% by mass at 7d while those at larger addition and longer age reduced. The reduction was found to be related to the release of alkali ion due to the addition of glass powder in the paste
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
- …
