22 research outputs found

    Not only mosses: lemming winter diets as described by DNA metabarcoding

    No full text
    The temporal dynamics of most tundra food webs are shaped by the cyclic population dynamics of lemmings. While processes during winter may be behind the recent disruptions of lemming cycles, lemming winter ecology is poorly known. We present here the first DNA metabarcoding data on the winter diet of Norwegian lemmings (Lemmus lemmus), based on feces collected after a winter of population increase. Prostrate willows, mosses, and graminoids dominated the species winter diet, indicating that the conventional idea of lemmings as moss‐specialists should be revised. The behavior of lemming‐plant models in theoretical studies is conditional on the assumptions of mosses being their main winter food item. As shrubs have been excluded from the framework of these models, incorporating them in future modeling studies should nuance our understanding on how plants affect lemmings. We also sampled diet of a few individuals found dead on top of the snow. These individuals had relatively empty stomachs and had, prior to death, relied heavily on mosses. This apparent lack of abundant good quality indicates spatial heterogeneity in local food availability during the population increase phase

    The importance of morphological versus chemical defences for the bloom-forming cyanobacterium Microcystis against amoebae grazing

    No full text
    Amoebae grazing can be an important loss factor for blooms of the common cyanobacterium Microcystis. Some Microcystis strains seem to be protected against amoebae grazing, but it is unclear whether this is achieved by their colony morphology or biochemically. These factors were investigated in grazing experiments using two Microcystis-grazing amoebae (Korotnevella sp. and Vannella sp.) and two Microcystis strains with differing colony morphology (aeruginosa and viridis morphotype) and different sensitivity to amoebae grazing. Amoebae did not increase in density and failed to reduce the growth rate of cultures of the amoebae insensitive viridis strain, irrespective of whether the Microcystis strain was colonial or unicellular. This suggests that the extended mucilage matrix surrounding viridis colonies is not the main defence mechanism against amoebae grazing. At the same time, the growth rate of both unicellular and colonial cultures of the amoebae-sensitive aeruginosa strain was heavily reduced by the growing amoebae. The addition of filtered viridis-conditioned medium to aeruginosa cultures significantly decreased both amoebae growth and its effect on aeruginosa growth rates, which indicates that extracellular compounds constitutively produced by viridis are at least partially responsible for their insensitivity to amoebae grazing. These results demonstrate the potential importance of chemical interactions between lower trophic levels (protists) for Microcystis bloom dynamics
    corecore