2,877 research outputs found

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    What factors explain the number of physical therapy treatment sessions in patients referred with low back pain; a multilevel analysis

    Get PDF
    BACKGROUND: It is well-known that the number of physical therapy treatment sessions varies over treatment episodes. Information is lacking, however, on the source and explanation of the variation. The purposes of the current study are: 1) to determine how the variance in the number of physical therapy treatment sessions in patients with non-specific low back pain (LBP) in the Netherlands is distributed over patient level, therapist level and practice level; and 2) to determine the factors that explain the variance. METHODS: Data were used from a national registration network on physical therapy. Our database contained information on 1,733 patients referred with LBP, treated by 97 therapists working in 41 practices. The variation in the number of treatment sessions was investigated by means of multilevel regression analyses. RESULTS: Eighty-eight per cent of the variation in the number of treatment sessions for patients with LBP is located at patient level and seven per cent is located at practice level. It was possible to explain thirteen per cent of all variance. The duration of the complaint, prior therapy, and the patients' age and gender in particular are related to the number of physical therapy treatment sessions. CONCLUSION: Our results suggest that the number of physical therapy treatment sessions in patients with LBP mainly depends on patient characteristics. More variation needs to be explained, however, to improve the transparency of care. Future research should examine the contribution of psychosocial factors, baseline disability, and the ability to learn motor behavior as possible factors in the variation in treatment sessions

    Local and global modes of drug action in biochemical networks

    Get PDF
    It becomes increasingly accepted that a shift is needed from the traditional target-based approach of drug development to an integrated perspective of drug action in biochemical systems. We here present an integrative analysis of the interactions between drugs and metabolism based on the concept of drug scope. The drug scope represents the set of metabolic compounds and reactions that are potentially affected by a drug. We constructed and analyzed the scopes of all US approved drugs having metabolic targets. Our analysis shows that the distribution of drug scopes is highly uneven, and that drugs can be classified into several categories based on their scopes. Some of them have small scopes corresponding to localized action, while others have large scopes corresponding to potential large-scale systemic action. These groups are well conserved throughout different topologies of the underlying metabolic network. They can furthermore be associated to specific drug therapeutic properties

    Early growth response gene-2 (Egr-2) regulates the development of B and T cells

    Get PDF
    The study was supported by Arthritis Research UK. Copyright @ 2011 Li et al.BACKGROUND: Understanding of how transcription factors are involved in lymphocyte development still remains a challenge. It has been shown that Egr-2 deficiency results in impaired NKT cell development and defective positive selection of T cells. Here we investigated the development of T, B and NKT cells in Egr-2 transgenic mice and the roles in the regulation of distinct stages of B and T cell development. METHODS AND FINDINGS: The expression of Egr1, 2 and 3 were analysed at different stages of T and B cell development by RT-PCT and results showed that the expression was strictly regulated at different stages. Forced expression of Egr-2 in CD2+ lymphocytes resulted in a severe reduction of CD4+CD8+ (DP) cells in thymus and pro-B cells in bone marrow, which was associated with reduced expression of Notch1 in ISP thymocytes and Pax5 in pro-B cells, suggesting that retraction of Egr-2 at the ISP and pro-B cell stages is important for the activation of lineage differentiation programs. In contrast to reduction of DP and pro-B cells, Egr-2 enhanced the maturation of DP cells into single positive (SP) T and NKT cells in thymus, and immature B cells into mature B cells in bone marrow. CONCLUSIONS: Our results demonstrate that Egr-2 expressed in restricted stages of lymphocyte development plays a dynamic, but similar role for the development of T, NKT and B cells.This article is provided by the Brunel Open Access publishing fund

    The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae

    Get PDF
    Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic

    Formation of Super-Earths

    Full text link
    Super-Earths are the most abundant planets known to date and are characterized by having sizes between that of Earth and Neptune, typical orbital periods of less than 100 days and gaseous envelopes that are often massive enough to significantly contribute to the planet's overall radius. Furthermore, super-Earths regularly appear in tightly-packed multiple-planet systems, but resonant configurations in such systems are rare. This chapters summarizes current super-Earth formation theories. It starts from the formation of rocky cores and subsequent accretion of gaseous envelopes. We follow the thermal evolution of newly formed super-Earths and discuss their atmospheric mass loss due to disk dispersal, photoevaporation, core-cooling and collisions. We conclude with a comparison of observations and theoretical predictions, highlighting that even super-Earths that appear as barren rocky cores today likely formed with primordial hydrogen and helium envelopes and discuss some paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Ed

    A cluster randomized controlled trial of the effectiveness and cost-effectiveness of Intermediate Care Clinics for Diabetes (ICCD) : study protocol for a randomized controlled trial

    Get PDF
    Background World-wide healthcare systems are faced with an epidemic of type 2 diabetes. In the United Kingdom, clinical care is primarily provided by general practitioners (GPs) rather than hospital specialists. Intermediate care clinics for diabetes (ICCD) potentially provide a model for supporting GPs in their care of people with poorly controlled type 2 diabetes and in their management of cardiovascular risk factors. This study aims to (1) compare patients with type 2 diabetes registered with practices that have access to an ICCD service with those that have access only to usual hospital care; (2) assess the cost-effectiveness of the intervention; and (3) explore the views and experiences of patients, health professionals and other stakeholders. Methods/Design This two-arm cluster randomized controlled trial (with integral economic evaluation and qualitative study) is set in general practices in three UK Primary Care Trusts. Practices are randomized to one of two groups with patients referred to either an ICCD (intervention) or to hospital care (control). Intervention group: GP practices in the intervention arm have the opportunity to refer patients to an ICCD - a multidisciplinary team led by a specialist nurse and a diabetologist. Patients are reviewed and managed in the ICCD for a short period with a goal of improving diabetes and cardiovascular risk factor control and are then referred back to practice. or Control group: Standard GP care, with referral to secondary care as required, but no access to ICCD. Participants are adults aged 18 years or older who have type 2 diabetes that is difficult for their GPs to control. The primary outcome is the proportion of participants reaching three risk factor targets: HbA1c (≤7.0%); blood pressure (<140/80); and cholesterol (<4 mmol/l), at the end of the 18-month intervention period. The main secondary outcomes are the proportion of participants reaching individual risk factor targets and the overall 10-year risks for coronary heart disease(CHD) and stroke assessed by the United Kingdom Prospective Diabetes Study (UKPDS) risk engine. Other secondary outcomes include body mass index and waist circumference, use of medication, reported smoking, emotional adjustment, patient satisfaction and views on continuity, costs and health related quality of life. We aimed to randomize 50 practices and recruit 2,555 patients

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-
    • …
    corecore