Super-Earths are the most abundant planets known to date and are
characterized by having sizes between that of Earth and Neptune, typical
orbital periods of less than 100 days and gaseous envelopes that are often
massive enough to significantly contribute to the planet's overall radius.
Furthermore, super-Earths regularly appear in tightly-packed multiple-planet
systems, but resonant configurations in such systems are rare. This chapters
summarizes current super-Earth formation theories. It starts from the formation
of rocky cores and subsequent accretion of gaseous envelopes. We follow the
thermal evolution of newly formed super-Earths and discuss their atmospheric
mass loss due to disk dispersal, photoevaporation, core-cooling and collisions.
We conclude with a comparison of observations and theoretical predictions,
highlighting that even super-Earths that appear as barren rocky cores today
likely formed with primordial hydrogen and helium envelopes and discuss some
paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of
Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio
Belmonte and Hans Deeg, Ed