7,834 research outputs found
Controlling competing interactions at oxide interfaces: Enhanced anisotropy in La0.7Sr0.3MnO3 films via interface engineering
We investigated thin La0.7Sr0.3MnO3-SrTiO3 heterostructures, where the band alignment is engineered by a variation of La/Sr stoichiometry only at the interface. In thin films, the engineered interface leads to an enhancement of the reversed spin configuration that mimics bulk behavior. Microscopically, this enhancement is closely connected with an increased magnetic anisotropy as well as intercoupling between an e(g) orbital reconstruction and a corresponding anisotropic lattice fluctuation. Furthermore, a reentrant-type behavior, triggered by this intercoupling, is observed in the remanent spin state. This microscopic perspective leads to insights on developing new strategies for maintaining bulk-like properties even in very thin La0.7Sr0.3MnO3 heterostructures.open11910Ysciescopu
Does landscape-scale conservation management enhance the provision of ecosystem services?
Biodiversity conservation approaches are increasingly being implemented at the landscape-scale to support the maintenance
of metapopulations and metacommunities. However, the impact of such interventions on the provision of ecosystem services
is less well defined. Here we examine the potential impacts of landscape-scale conservation initiatives on ecosystem
services, through analysis of five case study areas in England and Wales. The provision of multiple ecosystem services was
projected according to current management plans and compared with a baseline scenario. Multicriteria analysis indicated
that in most cases landscape-scale approaches lead to an overall increase in service provision. Consistent increases were
projected in carbon storage, recreation and aesthetic value, as well as biodiversity value. However, most study areas
provided evidence of trade-offs, particularly between provisioning services and other types of service. Results differed
markedly between study areas, highlighting the importance of local context. These results suggest that landscape-scale
conservation approaches are likely to be effective in increasing ecosystem service provision, but also indicate that associated
costs can be significant, particularly in lowland areas
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
Iron, silicate, and light co-limitation of three Southern Ocean diatom species
The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light
Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk
Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al
Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure
Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF.
Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased.
Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06.
Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems
Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs
Engaging Undergraduates in Science Research: Not Just About Faculty Willingness.
Despite the many benefits of involving undergraduates in research and the growing number of undergraduate research programs, few scholars have investigated the factors that affect faculty members' decisions to involve undergraduates in their research projects. We investigated the individual factors and institutional contexts that predict faculty members' likelihood of engaging undergraduates in their research project(s). Using data from the Higher Education Research Institute's 2007-2008 Faculty Survey, we employ hierarchical generalized linear modeling to analyze data from 4,832 science, technology, engineering, and mathematics (STEM) faculty across 194 institutions to examine how organizational citizenship behavior theory and social exchange theory relate to mentoring students in research. Key findings show that faculty who work in the life sciences and those who receive government funding for their research are more likely to involve undergraduates in their research project(s). In addition, faculty at liberal arts or historically Black colleges are significantly more likely to involve undergraduate students in research. Implications for advancing undergraduate research opportunities are discussed
- …
