2,666 research outputs found
Adaptive targeting in online advertisement: models based on relative influence of factors
We consider the problem of adaptive targeting for real-time bidding for internet advertisement. This problem involves making fast decisions on whether to show a given ad to a particular user. For demand partners, these decisions are based on information extracted from big data sets containing records of previous impressions, clicks and subsequent purchases. We discuss several criteria which allow us to assess the significance of different factors on probabilities of clicks and conversions. We then devise simple strategies that are based on the use of the most influential factors and compare their performance with strategies that are much more computationally demanding. To make the numerical comparison, we use real data collected by Crimtan in the process of running several recent ad campaigns
Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
How to Escape Local Optima in Black Box Optimisation: When Non-elitism Outperforms Elitism
Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their length, representing the Hamming path between the two optima and their depth, the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The ((Formula presented.)) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the ((Formula presented.)) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys
Constraints on the opacity of spiral disks from near-infrared observations
In this paper I review how near-infrared (NIR) observations can constrain the opacity of spiral disks. Basic considerations show that NIR photometry provides a powerful probe of the optical depths in spiral galaxy disks in the regime of interest, where the optical depth in the V-band is near unity. I review the existing opacity constraints from the analysis of dust lanes in edge-on and face-on galaxies. The ``internal extinction correction" in the NIR-Tully-Fisher relation deserves particular attention as the most powerful constraint on the impact of dust on the total luminosity of spiral galaxies. All observations for luminous spirals point towards an effective, face-on optical depth of tau_V=0.5-1
Physical activity to improve cognition in older adults: can physical activity programs enriched with cognitive challenges enhance the effects? A systematic review and meta-analysis
: EPHPP quality rating scores (DOCX 38 kb
Ambient-aware continuous care through semantic context dissemination
Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data.
Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability.
Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered.
Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results
Towards a Runtime Comparison of Natural and Artificial Evolution
Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse the runtimes of EAs on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrences of new mutations is much longer than the time it takes for a mutated genotype to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a stochastic process evolving one genotype by means of mutation and selection between the resident and the mutated genotype. The probability of accepting the mutated genotype then depends on the change in fitness. We study this process, SSWM, from an algorithmic perspective, quantifying its expected optimisation time for various parameters and investigating differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient
Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression
Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted
Situational awareness, relational coordination and integrated care delivery to hospitalized elderly in the Netherlands: A comparison between hospitals
__Abstract__
Background: It is known that interprofessional collaboration is crucial for integrated care delivery, yet we are still unclear about the underlying mechanisms explaining effectiveness of integrated care delivery to older patients. In addition, we lack research comparing integrated care delivery between hospitals. Therefore, this study aims to (i) provide insight into the underlying components 'relational coordination' and 'situational awareness' of integrated care delivery and the role of team and organizational context in integrated care delivery; and (ii) compare situational awareness, relational coordination, and integrated care delivery of different hospitals in the Netherlands. Methods. This cross-sectional study took place in 2012 among professionals from three different hospitals involved in the delivery of care to older patients. A total of 215 professionals filled in the questionnaire (42% response rate).Descriptive statistics and paired-sample t-tests were used to investigate the level of situational awareness, relational coordination, and integrated care delivery in the three different hospitals. Correlation and multilevel analyses were used to investigate the relationship between background characteristics, team context, organizational context, situational awareness, relational coordination and integrated care delivery. Results: No differences in background characteristics, team context, organizational context, situational awareness, relational coordination and integrated care delivery were found among the three hospitals. Correlational analysis revealed that situational awareness (r = 0.30; p < 0.01), relational coordination (r = 0.17; p < 0.05), team climate (r = 0.29; p < 0.01), formal internal communication (r = 0.46; p < 0.01), and informal internal communication (r = 0.36; p < 0.01) were positively associated with integrated care delivery. Stepwise multilevel analyses showed that formal internal communication (p < 0.001) and situational awareness (p < 0.01) were associated with integrated care delivery. Team climate was not significantly associated with integrated care delivery when situational awareness and relational coordination were included in the equation. Thus situational awareness acted as mediator between team climate and integrated care delivery among professionals delivering care to older hospitalized patients. Conclusions: The results of this study show the importance of formal internal communication and situational awareness for quality of care delivery to hospitalized older patients
- …
