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Abstract This paper proposes a topology optimization
based approach for designing meta materials exhibiting a
desired negative refraction with high transmission at a given
angle of incidence and frequency. The approach considers
a finite slab of meta material consisting of axis-symmetric
designable unit cells subjected to an exterior field. The unit
cell is designed to achieve the desired properties based
on tailoring the response of the meta material slab under
the exterior field. The approach is directly applicable to
physical problems modeled by the Helmholtz equation, such
as acoustic, elastic and electromagnetic wave problems.
Acoustic meta materials with unit cell size on the order of
half the wave length are considered as examples. Optimized
designs are presented and their performance under varying
frequency and angle of incidence is investigated.

Keywords topology optimization · negative refraction ·
wave propagation · meta materials · acoustics ·
electromagnetics · elastics

1 Introduction

In this paper the negative refraction of waves at a material
interface is understood from Snell’s law and the refractive
index, n, is defined accordingly. This is not identical to the
definition n = c/cp, where c is the wave speed in vacuum
and cp is the wave phase velocity in the material.

Materials exhibiting negative refraction of acoustic, elastic
or electromagnetic waves have been of great interest over
the last decades, see e.g. (Krowne and Zhang, 2007; Craster
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and Guenneau, 2013) for an introduction to and overview
of the topic. The work by Pendry (2000) discussing the
application of materials exhibiting negative refraction
in designing a perfect optical lens was instrumental in
sparking the interest in negative refraction. Another reason
for the interest is that a material exhibiting this behavior
may simultaneously have negative material parameters, as
first discussed theoretically for the electromagnetic case
by Veselago (1968). Having access to materials exhibiting
negative refraction and to materials with negative material
parameters, and even better being able to fine-tune the
behavior of such materials, opens up a range of new
possibilities in science and engineering by offering a new
way of manipulating fields. The most studied example
being improvements in focusing and lensing, see e.g. (Mills
et al, 2003; Xu et al, 2013; Zhang et al, 2009).

Materials exhibiting negative refraction and/or having
negative material parameters are not readily available
in nature however. Therefore so called meta materials
(MMs) consisting of an array of unit cells with the
desired properties must be created artificially through
careful design. A vast amount of research has gone into
understanding and designing MMs with negative material
parameters and MMs exhibiting negative refraction, see e.g.
(Zhang and Liu, 2004; Zhang et al, 2005; Philippe et al,
2015) for examples for acoustic, electromagnetic and elastic
waves respectively.

In most previous work the design of the MMs has relied on
a range of simplifying assumptions for the model problem
used to model the physics under consideration, such as:
Homogenization techniques where effective parameters for
the MM can be extracted from a given unit cell design,
which are only strictly valid when the unit cell size is much
smaller than the wave length; Considering a single unit cell
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with the assumptions of an infinitely periodic MM hereby
neglecting any edge effects at interfaces; Considering band
diagrams and identifying a (k, ω)-range with negative slope
under the assumption that only a single mode is excited
inside the MM, hereby disregarding more complex wave
interactions inside the MM.

In this work a novel approach to the problem of designing
meta material slabs exhibiting negative refraction is
suggested. The approach is based on applying topology
optimization, (Bendsøe and Sigmund, 2003), to determine
the material distribution inside the unit cells of the MM
in order to achieve the desired property. Whereas most
other publications on the topic have assumed either infinite
periodicity or have based their meta material design on
the evaluation of transmission studies through just one
layer of unit cells, we here base our designs on finite slabs
with arbitrary numbers of layers and model the full wave
field impinging on the slab. In this way both edge effects
of the slab as well as the complete field inside the MM
are automatically accounted for in the design process.
When applied successfully, the proposed approach allows
for the design of MM slabs exhibiting a desired negative
refraction to within a ≈ 10% − 20% margin of error with
a transmittance through the full slab of more than 95%
for a given incoming angle and frequency. Previous work
applying topology optimization as a tool for designing MMs
exhibiting effective negative parameters include, (Diaz and
Sigmund, 2009; Zhou et al, 2010; Lu et al, 2013). Other
interesting recent applications of topology optimization for
designing MMs with exotic behavior include the work by
Park et al (2015) on self collimating phononic crystals and
the work by Andkjær and Sigmund (2013) on designing
cloaks for acoustics and electromagnetics.

Although this paper presents examples for two dimensional
acoustics the approach has also successfully been tested
for designing MMs exhibiting negative refraction for both
TE and TM polarized electromagnetic waves and shear
waves in solids, in two dimensions. During the testing it
was found that problems with high contrast in material
parameters, such as the acoustic case treated here, are
the most challenging to treat. Except for computational
limitations, the method is not restricted to two dimensions.

2 The Model Problem

Consider an exterior wave problem governed by the
Helmholtz equation (1), defined on the domain, Ω ⊂ R2,
illustrated in Fig. 1.

Ω is truncated by the curve δΩ, along which a far field
matching condition is imposed to fulfill the Sommerfeld

Fig. 1: Model problem sketch. Ω: Truncated Domain. Ωop:
Optimization domain. Ωd : Design domain. δΩ : Truncated Domain
boundary. δΩPW : Excitation boundary.

radiation condition (2) corresponding to perfectly absorbing
boundary conditions. A boundary condition (3) is imposed
along a section of δΩ, denoted δΩPW in order to excite
a localized plane wave entering and traveling through Ω.
For use in the optimization problem two subdomains, Ωd

and ΩOP are defined. Ωd denotes the design domain and
is where the designable MM slab consisting of an array
of axis symmetric unit cells is placed. ΩOP denotes the
optimization domain and is where the objective function
for the optimization problem is defined. ΩT denotes the
truncated modeling domain used when displaying the
solution field and design. The model problem can be written
as

∇ ·
(

1

α(x)
∇ψ(x)

)
+ ω2 1

γ(x)
ψ(x) = 0, x ∈ Ω, (1)

lim
|r|→∞

√
|r| ·

(
∂ψ(r)

∂|r|
+ iω ·

√
α

γ
ψ(r)

)
= 0, x ∈ δΩ,

(2)

n ·
(

1

α(x)
∇ψ
)

= an, x ∈ δΩPW.

(3)

In equations (1)-(3) x and r denote the spatial dependence
in Cartesian and polar coordinates respectively, i is the
imaginary unit, ψ is the field of interest, ω = 2πf is the
angular frequency with f being the frequency.α(x) and γ(x)

are material parameters and depend on the material at the
point x. Finally an is calculated by prescribing a knownψ on
δΩPW using the following expression describing a Gaussian
shaped plane wave
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ψGPW = e−
(

(x−xw)·d̂
δx

)2

e−iω̂(x·d), (4)

d =

cos(π/2 + θ)

sin(π/2 + θ)

 , xw =

xw
yw

 . (5)

Here δx controls the width of the Gaussian envelope, d
controls the propagation direction of the wave, d̂ denotes the
transpose direction vector, finally xw controls the position of
the center of the wave. Henceforth the spatial dependence
of quantities is suppressed for brevity, except when needed.
See Fig. 2 for a simplified sketch of the solution of (1)-(3)
superimposed onΩ in light gray, given the imposition of (4)
on δΩPW with an empty Ωd. Note that θ = θ1 is measured
positively as illustrated in Fig. 2.

Fig. 2: ψ: Enveloped plane wave (Solution to (1)-(3)) and ψtarget:
Target wave, overlaid on modeling domain. Ω: Truncated Domain.
Ωop: Optimization domain. Ωd : Design domain. δΩ : Truncated
Domain boundary. δΩPW : Excitation boundary.

For the examples treated in this paper the model problem is
non-dimensionalized and rescaled as

α̂ =

{
1 void
αsolid
αvoid

solid
, γ̂ =

{
1 void
γsolid
γvoid solid

, ω̂ =
ω

c
. (6)

Here c ≡ 1 is a normalized and non-dimensional wave
speed. For the acoustic problem treated in the paper, ψ is
the sound pressure while α = ρ and γ = κ are the density
and the bulk modulus, respectively. Each position in space
may either consist of a solid perfectly reflecting material
or void (air). For the elastic case, ψ is the displacement
field while α and γ relate to the density and shear modulus.
For the transverse electromagnetic cases ψ is either the

electric or magnetic field while α and γ relate to the electric
permeability and permittivity.

2.1 Discretization

For the simulation results presented in this work the
model problem is discretized using a hybrid wave based
method and a finite element method (hybrid WBM-
FEM method), developed for acoustic problems modeled
using the Helmholtz equation in 2D and 3D, (Desmet,
1998; Pluymers, 2006). The method has previously been
applied for topology optimization by Goo et al (2014)
and Christiansen et al (2015b). The design domain, Ωd,
is discretized using Ne bi-linear finite elements and the
rest of the domain, Ω\Ωd is discretized using the wave
based method. The two disjoint subdomains are coupled
using an indirect impedance coupling described in chapter
7 of (Pluymers, 2006). The far field boundary condition is
implemented using the method proposed in chapter 6 of
(Pluymers, 2006). Although the hybrid WBM-FEM method
is more complex to implement than a pure FEM method
and has certain restrictions, it has the strength that very
few degrees of freedom are needed in the WBM part of
the domain. This significantly reduces the size of the linear
system to be solved to obtain ψ hereby saving significant
computational resources.

3 The Optimization Problem

The proposed approach applies topology optimization as
the tool for designing the meta material slabs and consists
of formulating and solving a constrained optimization
problem. The objective of the problem is to minimize
the amplitude difference between a target enveloped plane
wave, ψtarget (illustrated in Fig. 2 using dark gray), and ψ, the
solution of (1)-(3) over ΩOP. This difference is minimized
by introducing a periodic array of axis-symmetric identical
unit cells in Ωd (the MM slab). The chosen ψtarget takes
the form given in (4) with identical direction, d, and width,
δxtarget , as the wave generated by the imposed boundary
condition on δΩPW. The position of the center of ψtarget,
xwtarget , is chosen based on the desired refractive index, n for
a given θ1 using (22) in section 4.

The objective function, Φ, to be minimized, is formulated
based on the standard deviation, STD(x), between |ψ|2 and
|ψtarget|2 and is defined onΩOP as
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Φ = cs · STD
ΩOP

(
|ψ|2 − |ψtarget|2

)
, (7)

STD
ΩOP

(x) = cs ·

∫ (
x−

∫
x dΩOP∫
dΩOP

)2
dΩOP∫

dΩOP
, (8)

where cs is a scaling parameter used to adjust the magnitude
of Φ to improve the performance of the optimization
algorithm. If Φ reaches a very low value it is beneficial
to modify it by applying the natural logarithm to further
improve the performance of the optimization algorithm.

The discrete optimization problem of minimizing Φ by
placing solid material in Ωd is replaced by a continuous
optimization problem through the introduction of an
auxiliary design field, ξ(x) ∈ [0, 1] ∀ x ∈ Ωd, ξ(x) =

0 ∀ x ∈ Ω\Ωd. This field is used to interpolate between
the inverse material parameters for solid and void as,
α̂(ξ)−1 = α−1void + ξ

(
α−1solid − α

−1
void

)
and γ̂(ξ)−1 = γ−1void +

ξ
(
γ−1solid − γ

−1
void

)
, which allows for a continuous transition

between solid and void at a given position in space. This
material interpolation agrees with the choice by Dühring
et al (2008) and is natural for the acoustic case since the
inverse material parameters appear directly in the Helmholtz
equation (1). The design field, ξ, is discretized into a
piecewise constant field leading to a finite number of design
variables (one per finite element used to discretize ΩOP,
Ne), i.e.

ξ =
∑
i∈Ne

ξi, ξi =

{
[0, 1] in the i’th finite element
0 elsewhere

(9)

the design field of one unit cell is mapped to all the other unit
cells. A volume constraint (11) is imposed on the amount of
material that may be used in the design and the continuous
optimization problem is stated as a min/max problem
(10) allowing for optimizing for multiple frequencies and
multiple angles of incidence simultaneously.

min
ξ

max
θ1,f

( Φ(ψ(x, ξ, θ1, f), ψtarget(x, θ1, f)) ) , (10)

s.t.
1

AΩd

∫
ξ dΩd ≤ V, V ∈ ]0, 1], AΩd =

∫
dΩd. (11)

Here ψ(x, ξ, θ1, f) is obtained by solving (1)-(3) for a given
realization of ξ, θ1 and f while ψtarget(x, θ1, f) is calculated
using (4)-(5).

The optimization problem (10)-(11) is recast to the standard
bound-formulation presented in (2.3) in Svanberg (2002)
and solved accordingly using The Globally Convergent
Method of Moving Asymptotes (GCMMA) (Svanberg, 1987,

2002), by selecting the appropriate constants in the call
to GCMMA. A maximum of 3 inner iterations per outer
iteration and move limits on ξi of 0.05 for each outer
iteration are used. The gradient information, dΦ

dξi
, needed in

the optimization, (12)-(13), is obtained by calculating the
sensitivites of Φ towards changes in ξ using discrete adjoint
sensitivity analysis, see Dühring et al (2008) and references
therein,

dΦ
dξi

=
∂Φ

∂ξi
+ <

(
λT ∂S
∂ξi
ψ

)
, STλ = −

(
δΦ

δψ

)T

. (12)

The j’th component of
(
δΦ
δψ

)T
is given as

(
δΦ

δψ

)
j

=

(
∂Φ

∂ψRj
− i

∂Φ

∂ψIj

)
= 4 · cs ·

1∫
dΩOP

· (13)∫ (
(|ψ|2 − |ψtarget|2)−

∫
(|ψ|2 − |ψtarget|2)dΩOP∫

dΩOP

)
·(

φjψ −
∫

(φiψ)dΩOP∫
dΩOP

)
dΩOP.

In (12)-(13) S is the discretized system matrix for (1)-(3), ψ
is the solution vector for the discrete problem Sψ = f and
f is introduced by the boundary conditions (2)-(3) as well
as the coupling between the FEM and WBM subdomains.
φj is the j’th basis function used to represent the solution,
ψ =

∑
j ψjφj , with ψj = ψRj + jψIi . Finally ·̄ denotes the

complex conjugate.

To assure that the final design is physically admissible, i.e.
consisting purely of solid and void regions, a projection
operator along with a smoothing filter is applied to the
design field, (Guest et al, 2004; Xu et al, 2010; Wang et al,
2011). The projection operator is given as

ˆ̃
ξ(ξ̃) =

tanh(βη) + tanh(β(ξ̃ − η))

tanh(βη) + tanh(β(1− η))
. (14)

where η is the projection level and β is the projection
strength. A continuation scheme for β is applied, where
β = 1 is used initially and β is doubled every 25 iterations
or whenever the objective value changes less than 10−3 of
the previous objective value for 5 consecutive iterations. The
smoothing filter is given as

ξ̃(xi) =

∫
Ωd
w(xi − xj)ξ(xj)dxj∫
Ωd
w(xi − xj)dxj

, (15)

w(x) =

{
R− |x| ∀ |x| ≤ R ∧ x ∈ Ωd

0 otherwise
, (16)
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where R is the filter radius.

The application of the smoothing and projection on ξ means
that instead of interpolating the material parameters, α−1

and γ−1 using ξ, the smoothed and projected field ˆ̃
ξ is used.

The application of the smoothing filter and projection
operator requires a modification of the sensitivities given as

dΦ
dξi

=
∑
h∈Be,i

∂ξ̃h
∂ξi

∂
ˆ̃
ξh

∂ξ̃h

dΦ

d ˆ̃
ξh
, (17)

∂ξ̃h
∂ξi

=
w(xh − xi)Ai∑

j∈Be,h w(xh − xj)Aj
, (18)

∂
ˆ̃
ξh

∂ξ̃h
=

β sech2(β(ξ̃h − η))

tanh(βη) + tanh(β(1− η))
. (19)

Here Be,i denotes the indices of the design variables, ξe,
which are within the filter radius of design variable ξi, x(·)
denotes the coordinate of the center of element (·) and A(·)
is the area of the (·)’th finite element.

The final stopping criterion used in the optimization
procedure is given as

β > 1000 ∧ |Φn+1 − Φn| < 10−3 · Φn, (20)

where Φn is the objective value at the n’th iteration.

4 The ”Refractive Index” and the Evaluation of ψtarget

Snell’s law, (21), relates the refractive index, n, of a material
placed in vacuum to the incident angle, θ1, and the refracted
angle, θ2, of a plane wave impinging on the material as

n =
sin(θ1)

sin(θ2)
⇔ θ2 = arcsin

(
sin(θ1)

n

)
. (21)

Fig. 3 provides an illustration of the negative refraction
of a beam, from a slab of material (located in Ωd). The
beam enters the domain, ΩT, at the lower edge centered at
〈x0, y0〉. It is refracted with full transmission at the lower
interface of the material slab, continues through the slab and
is again refracted with full transmission at the top interface.
By convention θ1 is measured positivity and θ2 is measured
negatively as shown in Fig. 3.

By using (21) and the sketch in Fig. 3 it is straight forward to
derive an expression for the x-coordinate, x3, of the center of
the beam exiting the MM, based on the following parameters
{x0, y0, y1, y2, y3, θ1, θ2}. I.e the position of the center of

Fig. 3: Sketch of negative refraction of a beam entering the domain
centered at 〈x0, y0〉, including quantities needed to calculate the
placement of the center of ψtarget, 〈x3, y3〉, in order to obtain a desired
n for a given θ1.

the incoming beam 〈x0, y0〉, the position of the interfaces
of the material slab, y1, y2, the angle of incidence, θ1, the
angle of refraction, θ2, and the y-coordinate of the center of
the target wave, y3.

x3 = x0 + tan (θ1) (y3 − y2 + y1 − y0) (22)

+ tan(θ2) (y2 − y1) .

The procedure for evaluating the target wave, ψtarget, needed
for the optimization problem (10)-(11) for a desired n at a
given θ1 and f may now be described as follows.

1. Select the target n, θ1 and f .
2. Calculate the refracted angle θ2 using (21).
3. Select the dimensions and position ofΩT,ΩOP,Ωd (this

provides {y0, y1, y2, y3}).
4. Select the position of the center of the enveloped plane

wave ψ generated at δΩPW: xwPW = 〈x0, y0〉.
5. Calculate the x-coordinate of the position of ψtarget, x3,

using (22).
6. Select the width of ψtarget: δxtarget = δxPW .
7. Evaluate ψtarget using (4)-(5).

Note that the definition of n from Snell’s law is not
guaranteed to coincide with the definition of the refractive
index given as n = c

cp
, where c is the wave speed in vacuum

and cp is the phase velocity of the wave in the medium
through which it propagates. That is, it is possible to observe
negative refraction of the wave without the resulting field
inside the slab having a negative phase velocity.
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5 Transmittance of Sound Power

A strength of the proposed objective function is the
high level of transmission obtained for the designed meta
material slabs. The measure of the transmission through
the full MM slab used in the following sections is the
transmittance, T . T is obtained by integrating the incoming
and transmitted field at the second interface of a slab of MM
using the following expression:

T =

∫
δΩd

ψS(x, y2)ψS(x, y2)dx∫
δΩd

ψE(x, y2)ψE(x, y2)dx
. (23)

Here y2 denotes the y-coordinate of the second interface of
the slab, see Fig. 3, δΩd denotes the x-coordinate interval
along the second interface of the slab of MM. ψS(y, x)

denotes the field in the modeling domain containing the MM
slab, and ψE(x, y) denotes the incident wave in the domain
without the slab.

6 Important Observations

It is stressed that not all initial configurations lead to final
designs with a low objective value, i.e. a MM slab with
high T and near the target ntarget. Tuning the unit cell
dimensions relative to the target frequency is necessary
to obtain highly performing results. This tuning was
performed by numerical experimentation. For the examples
considered in the following, a wave length on the order of
two times the unit cell size was found to be a good choice.
Also, starting the optimization process with a small spatial
overlap between ψ and ψtarget was found to be important
for the optimization to converge to well-performing final
designs. Requiring this overlap sets bounds on the values of
θ1 and n for which it is possible to start the optimization.
These bounds may be calculated from the width of the
Gaussian envelope and the thickness of the MM slab used
in the optimization using simply trigonometry. By applying
a continuation approach where θ1 and/or n is increased
during the optimization it is possible to extend their values
beyond those bounds.

It has been found that dividing the optimization process in
to two phases, where a restriction is imposed on the design
domain in the first phase (Fig. 4i), while the second phase
is unrestricted (Fig. 4ii), yields a significant improvement in
the convergence of the method to highly performing designs.
The restriction used in the numerical examples presented in
section 7 consists of restricting the designable part of Ωd

to an FCC crystal-like grid. The radius of the inclusions
in the FCC grid relative to the unit cell size is denoted
rFCC. During the first phase all ξi outside the designable part

are fixed at ξi = 0, while in the second phase all ξi are
allowed to change. Fig. 4 illustrates the designable part of
Ωd, highlighted in gray, in the two phases using a sample
4× 3 unit cell slab.

(i) (ii)

Fig. 4: Sketch of a (i) Restricted and (ii) Free periodic design domain
consisting of 4× 3 doubly axis symmetric unit cells.

For all examples presented in the paper rFCC = 0.25 is
used and the duration of the two phases is linked to the
β-continuation scheme. Phase one is executed for β ≤ 4

and phase two is executed for β > 4.

By tuning the unit cell size and using the two phase approach
the proposed method has been found to converge to MMs
with low objective value, i.e. T > 0.95 and n within≈ 10%

of ntarget when evaluated at the target θ1 and n, for all tested
values of n ∈ [−4,−0.5] and θ1 ∈ [2.5o, 15o]1. Designing
MMs for values of n and/or θ1 outside the range stated above
may be done by applying a continuation approach for θ1
and the position of ψtarget, xwtarget . In the continuation scheme
θ1 and/or n are changed gradually from an initial value to
the final desired value during the optimization. Applying
the continuation approach with four changes of θ1 and/or
n during the initial part of the optimization with 20 iteration
between each change, it has been found possible to design
MMs with T > 0.85 and within ≈ 25% of the desired n
for n ∈ [−4,−0.35] for θ1 = 10o and for θ1 ∈ [2.5o, 30o]

for n = −1. The reason for the upper limits on θ1 and n
when using the continuation scheme is that the width of
the slab becomes a limiting factor (a wider slab is more
expensive from a computational perspective). The authors
find it reasonable to expect that MMs may be designed for
larger θ1 and/or n closer to zero if the width of the slab is
increased.

7 Numerical Results

Numerical results demonstrating the proposed method
are presented. The material parameters for the solid

1 Note that the proposed formulation does not allow θ1 = 0o due to
the formulation relying on (21).
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and void regions are chosen to be those of aluminum;
ρsolid = 2630.0 kg m−3, κsolid = 6.87 · 1010 N m−2 and
air; ρair = 1.204 kg m−3, κair = 141.921 · 103 N m−2,
respectively. This provides a high contrast between solid
and void resulting in near perfect reflection of the acoustic
waves from solid regions, corresponding to a zero Neumann
boundary condition along solid/void interfaces. The high
impedance mismatch between the air and solid ensures
that no significant excitation of elastic waves occurs
in the solid material. Thus in the present case, where
aluminum and air are considered, the elastic-acoustic
interactions may be ignored, as is the standard procedure
when performing topology optimization of high contrast
acoustic problems (Dühring et al, 2008). The authors have
investigated and validated this assumption both numerically
and experimentally in previous work, concerning a topology
optimized acoustic cavity (Christiansen et al, 2015a).

The parameter values used in the numerical examples
are given in table 1. The designable MM slab consists
of 22 × 6 unit cells. Each unit cell is discretized into
80 × 80 finite elements, with each element containing a
single design variable, yielding a total of 844800 finite
elements in Ωd and 3600 design variables. If the full
domain Ω is discretized using a FEM method ≈ 3 · 106

finite elements are needed yielding ≈ 3 · 106 degrees of
freedom. Using the Hybrid WBM-FEM method the total
number of degrees of freedom is reduced to ≈ 0.88 · 106,
at the expense of a small fraction of the system matrix
being dense. The software used to solve the problem
is written in MATLAB. When executing the code on a
single 2.40 GHz Intel Core i7-3630 QM processor for
the chosen parameters optimizing for one θ1 and one f

a design iteration uses 100-300 seconds (depending on
the number of inner iterations in GCMMA). A total of
200-250 design iterations are used for the investigated cases.

For all examples an enveloped plane wave with the non-
dimensionalized wavelength, λ = 1

3 , is excited at δΩPW.
The unit cell size is (ax, ay) =

(
1
6 ,

1
6

)
in non-dimensional

units; hence there are 2 unit cells per free space wavelength
of the pressure field. The performance of the designed
MMs in terms of n and T is in all cases investigated by
considering a slab consisting of 22 × 12 unit cells, i.e. a
slab of twice the depth of the slab used in the optimization
procedure. The increased depth is used to highlight that the
optimized design works as a bulk material and not only for
the thickness of the slab used in the optimization. That is,
the performance of the designed MM slabs consisting of the
optimized unit cell designs show little dependence on slab
thickness.

Parameter Value

xΩT × yΩT [−26/12, 26/12]× [−18/12, 18/12]

xΩop × yΩop [−26/12, 26/12]× [8/12, 18/12]

xΩd × yΩd [−22/12, 22/12]× [−6/12, 6/12]

Ne,x ×Ne,y 80× 80

Nuc,x ×Nuc,y 22× 6

xwPW 〈0.0,−26/12〉

δx,PW = δx,target 0.7

δΩ δΩT

δΩPW [−26/12, 26/12]×−18/12

R 1
240

η 0.5

V 0.25

cs 103

Table 1: x[·] × y[·]: Non-dimensional domain sizes. Ne,x ×
Ne,y: Number of finite elements per unit cell. Nuc,x ×Nuc,y:
Number of unit cells in the material slab. xwPW : Center
of incoming wave. δx,PW: Width of Gaussian envelope on
incoming wave. δx,target: Width of Gaussian envelope on
target wave. δΩ[·]: Domain boundary. R: Filter radius.
η: Projection level. V : Volume constraint. cs: Objective
function scaling.

(i) (ii)

Fig. 5: (i) Initial guess for a unit cell in the restricted design. (ii) Unit
cell in the final design for the example in section 7.1.

7.1 Single Angle of Incidence, ntarget = −1

As a first demonstration of the proposed method, we
consider designing a MM for the target negative refractive
index, ntarget = −1, at the incident angle, θ1 = 10o and the
non-dimensional frequency f = 3.

Fig. 5i shows the initial guess for a unit cell in the design
domain, where the gray area corresponds to ξ = 0.25 and
the white area to ξ = 0. Fig. 5ii shows a unit cell in the final

design where black is material ( ˆ̃
ξ = 1) and white is void
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(i)

(ii)

Fig. 6: (color online) Amplitude of the solution to the model problem
(1)-(3), |ψ|, in ΩT for an incident angle θ1 = 10o (i) containing a MM
slab of 22× 12 unit cells consisting of the optimized design in Fig. 5ii.
(ii) In an empty ΩT.

( ˆ̃
ξ = 0).

Fig. 6 shows the amplitude of the pressure field, |ψ|, in ΩT

for an incident enveloped plane wave at θ1 = 10o, Fig. 6i
with and Fig. 6ii without the MM slab placed in the center
of the modeling domain.

The refractive index of the MM slab is estimated by
applying the following procedure. The field inside the MM,
ψ, is fitted to a perfect Gaussian envelope, ψPGE:

ψPGE = APGEe−
(

(x−xw)·d̂
δx

)2

(24)

= APGEe−
(−(x−xw) sin(π/2+θ2,fit)+(y−yw) cos(π/2+θ2,fit)

δx

)2

,

(25)

whose width δx, amplitude APGE, position xw, and angle
for the direction of propagation θ2,fit are free parameters.
The fit is made using a nonlinear least-squares curve
fitting tool which solves the minimization problem;

min
δx,APGE,xw,θ2,fit

‖ ψ − ψPGE ‖22 over the meta material slab.

The angle of refraction of the incoming enveloped plane
wave, θ2 ≈ θ2,fit, is obtained from the fit.

The angle θ2,fit obtained from the fit along with the
angle θ1 of the incoming wave is used to estimate
n using (21). It is noted that θ2,fit in some cases
were found to be sensitive to the initial guess of the
fitting parameters in the fit with a maximal variation
of ∆θ2 = 0.5o. Hence a bound on θ2 ≈ θ2,fit is
θ2,bound ∈ [θ2,fit −∆θ2, θ2,fit + ∆θ2]. The uncertainty in θ2
propagates to uncertainty in the refractive index. Therefore
bounds on n have been calculated, providing an estimate
of a minimum value, nmin = sin(θ1)

sin(θ2,fit+∆θ2)
and maximum

value nmax = sin(θ1)
sin(θ2,fit−∆θ2) for n for a given θ1. These

bounds are included in all reported values of n.

Using this procedure for the present case one obtains
n ≈ −1.06 ± 0.05 and T ≈ 0.98 for the bulk MM at
the prescribed frequency f = 3 and angle of incidence
θ1 = 10o. Hence the designed acoustic MM is exhibiting
the desired negative refraction to within ≈ 10% and with
high transmission at the prescribed angle of incidence.

7.1.1 Angular and Frequency Dependence

An investigation of the angular and frequency dependence
of T and n are presented in Fig. 7i and 7ii respectively.

Fig. 7i shows T (θ1) for five equidistant frequencies in the
interval, f ∈ [2.7, 3.3]. Here it is seen that T remains above
0.95 for the frequencies f ∈ [2.7, 3.0] for θ1 ∈ [2.5o, 15o]

after which it drops off for all frequencies. For the two
higher frequencies the transmission quickly drops off. This
is in part due to some of the energy being reflected from the
interfaces of the MM and in part due to n going towards
zero, i.e. a large value of |θ2| which results in part of the
energy being refracted towards the left side of the MM slab.

Consider now the refractive index shown in Fig. 7ii
for f ∈ {2.85, 3.00, 3.15, 3.30}. Here it is seen
that n is sensitive towards both angular changes and
frequency changes, however it remains negative across
all investigated frequencies and angles. n for f = 2.75 is
−475 < n < −17 ∀ θ1 meaning that the refracted angle, θ2
is in the interval 0.0o ≤ θ2 ≤ 0.5o. Hence for this frequency
the refracted field is transmitted through the slab almost
without any transverse change in position.

Fig. 8 illustrates the variation in the field across a range of
incoming angles, θ1 ∈ [2.5o, 15o] for f = 3.0.
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(i)

(ii)

Fig. 7: (color online) (i) Transmittance and (ii) refractive index,
including error bars denoting the uncertainty in n stemming from the
uncertainty in θ2,fit, for MM slab consisting of 22 × 12 unit cells
containing the optimized design shown in Fig. 5ii as a function of
incident angle, θ1, for different frequencies.

7.1.2 The Field Inside the MM

By looking at the temporal and spatial variations of the
pressure field inside the MM it is observed that the field
pattern is non-trivial. I.e. the field inside the MM slab
cannot be described exactly by a simple plane wave traveling
through the slab. As an example of investigating the field
inside the MM slab, consider a plane wave with f =

3 impinging on the meta material slab at a right angle
(θ1 = 0). For this investigation infinite periodicity in the
x-direction is assumed. By performing a Fourier transform,
F (ψ, k), of the field inside the MM, utilizing the periodicity
to only consider a 1×12 column of unit cells, and recording
the magnitude |F |2 for wave vectors, k = 〈kx, ky〉, with
zero x-component, one obtains the spectrum shown in Fig.
9. From here it is seen that four modes are excited inside
the MM. A dominant mode centered at the positive wave
number sgn(ky) · |kp| ≈ 3.9 · 2π along with a number
of side lobes as well as three modes being approximately
an order of magnitude smaller with negative wave numbers
centered at, sgn(ky) · |kn1

| ≈ −2 · 2π, sgn(ky) · |kn2
| ≈

Fig. 8: (color online) Amplitude of the solution to the model problem
(1)-(3), |ψ|, in ΩT containing a MM slab of 22×12 unit cells consisting
of the optimized design in Fig. 5ii for six different incident angles θ1
at the target frequency f = 3.0. (i) θ1 = 2.5o (ii) θ1 = 5.0o (iii)
θ1 = 7.5o (iv) θ1 = 10.0o (v) θ1 = 12.5o (vi) θ1 = 15.0o.

Fig. 9: (color online) Squared magnitude of the Fourier transform of
the field inside the MM slab across 1 × 12 unit cells for an incident
plane wave, ψ, at θ1 = 0o and f = 3 for the design shown in Fig. 5ii,
for a k-vector with zero x-component.

−3.9 · 2π, sgn(ky) · |kn3
| ≈ −8.1 · 2π, respectively.

This example indicates that the designed MM slab exhibits
negative refraction through an interaction of excited waves
having both positive and negative phase velocity, cp = ω

k .
The finding that several modes contribute to the field inside
the MM agrees with the findings in Mortensen et al (2010),
where an optical material is considered.
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(i) (ii)

Fig. 10: (i) Initial guess for a unit cell in the restricted design. (ii) Unit
cell in the final design for the example in section 7.2. Black is solid,
white is void and gray is an intermediate between solid and void.

7.2 Multiple Incoming Angles, ntarget = −1

The first example illustrated that the proposed method
can be used to design MMs exhibiting a given negative
n for a single incoming angle and frequency with good
accuracy and high T . Furthermore, it was seen that the
refractive index remains negative across a wide range of
incoming angles and a frequency band of 20%. However,
both the refractive index and transmittance exhibit a strong
dependence on both θ1 and f . This example illustrates
that the variation with θ1 may be reduced and the overall
performance increased by optimizing the MM across a
range of incoming angles. The same parameters as the first
example are used in the optimization problem, except that
three incident angles are considered simultaneously, θ1 ∈
{5o, 10o, 15o}. Fig. 10ii shows the unit cell for the final
design.
Fig. 11i and Fig. 11ii show a comparison of T and n,
respectively, for the MM seen in Fig. 5ii, denoted E1, and
the MM seen in Fig. 10ii, denotedE2, evaluated at the target
frequency f = 3.0.
From Fig. 11i it is observed that the transmission has
improved for all investigated angles such that T (θ1) >

0.96 ∀ θ1 ∈ [2.5, 15] and from Fig. 11ii it is seen that the
variation in n has decreased slightly across θ1 ∈ [5, 15]. An
increase in transmittance of≈ .005 is seen even for the angle
θ1 = 10o for which E1 was optimized. The explanation for
this unexpected increase is the decrease in n compared to
the target value. I.e. in terms of the objective function value
for (f, θ1) = (3, 10o), E1 still outperforms E2; ΦE1

(f =

3, θ1 = 10) ≈ 0.17 and ΦE2(f = 3, θ1 = 10) ≈ 1.7.

7.2.1 Uniform Spatial Variations

The ultimate goal of designing MM slabs exhibiting
negative refraction is using the resulting designs in real
world applications. Hence the optimized designs have to
be manufactured and regardless of the chosen method,

(i)

(ii)

Fig. 11: (color online) Comparison of (i) Transmittance and (ii)
refractive index, including error bars denoting the uncertainty in n

stemming from the uncertainty in θ2,fit, for MM slab consisting of
22× 12 unit cells seen in Fig. 5ii (E1) and a MM slab of 22× 12 unit
cells seen in Fig. 10ii (E2). The frequency used for the calculations is
the target frequency for the optimization f = 3.

production errors may occur. It is therefore valuable to
know how production errors affect the designs performance.
Common manufacturing errors in micro-nano-processing
are over- and under-etching or over- and under exposure
which can be observed as near uniform erosion or dilation
of manufactured devices (Zhou et al, 2016; Jansen et al,
2013). Hence, this section presents an investigation of how
uniform dilation/erosion of the optimized design considered
in section 7.2, optimized for multiple incoming angles,
affects its transmittance and index of refraction. The dila-
tion/erosion of the design is performed by adding/removing
a single element of material to/from the edge of each feature,
corresponding to 1/80 or 1.25% of unit cell size. The
unit cells for the dilated, E2,Dilate, and eroded, E2,Erode,
design are presented in Fig. 12 along with illustrations of
the changes from the optimized unit cell seen in Fig. 10ii.
For the eroded design the narrow features along the top and
bottom edges of the unit cell disappear completely, while for
the dilated design all features remain intact.
Fig. 13 shows the amplitude of the pressure field |ψ| in ΩT

for an enveloped plane wave incident at θ1 = 10o for the
eroded, optimized and dilated design. Changes in both n and
T introduced by the erosion/dilation can be observed.
An investigation of n(θ1) and T (θ1), θ1 ∈ [0o, 20o], for
E2, E2,Erode and E2,Dilate is presented in Fig. 14. Both



11

(i) (ii)

(iii) (iv)

Fig. 12: (i) Eroded, E2,Erode, and (ii) Dilated, E2,Dilate, unit cell for
the optimized design, E2, presented in Fig. 10ii. Here black denotes
material and white denotes void. (iii) and (iv) show the difference
between the optimized design and the eroded and dilated designs
respectively. Here gray denotes unchanged areas of the unit cell while
white denotes removed material and black denotes added material.

Fig. 13: (color online) Amplitude of the solution to the model problem
(1)-(3), |ψ|, with θ1 = 10o, inΩT containing a MM slab of 20×12 unit
cells consisting of the (i) eroded, (ii) optimized and (iii) dilated design
presented in Fig. 12i, 10ii and 12ii, respectively.

n(θ1) and T (θ1) are affected by the dilation/erosion, which
is not unexpected as the design was not optimized for spatial
robustness. Although the performance of the MM slab
deteriorates in both cases the index of refraction remains
negative for all θ1 and T > 0.8 for θ1 < 15o. Considering
E2,Erode, T is observed to increase for all θ1, whereas n
deteriorates compared to E2 and the optimization target
ntarget = −1. For E2,Dilate the transmittance decreases and
the index of refraction increases, i.e. θ2 increases for all
θ1. It is interesting to note that the erosion and the dilation
have opposite effects on T and n, with T increasing and n
decreasing for the erosion and vise versa for the dilation.

(i)

(ii)

Fig. 14: (color online) (i) Transmittance and (ii) refractive index,
including error bars denoting the uncertainty in n stemming from the
uncertainty in θ2,fit, as a function of θ1 for a MM slab consisting
of 22 × 12 unit cells of the optimized E2, eroded E2,Erode and
dilated E2,Dilate designs presented in Fig. 10ii, Fig. 12i and Fig. 12ii
respectively.

7.3 Frequency Band, ntarget = −1

The example in section 7.2 demonstrated that it is possible
to increase the transmission and reduce the variation in n
across an interval of incoming angles by accounting for
multiple angles in the design process. The next example
investigates if it is possible to obtain similar results across
a frequency band as well. Consider the same parameters
used in the first example except that the design is
optimized for three wave lengths simultaneously. The non-
dimensional wavelengths are λi ∈ {10/27, 10/30, 10/33}
corresponding to f ∈ {2.85, 3, 3.15} i.e. a 10% frequency
band centered at fc = 3. The resulting unit cell design is
shown in Fig. 15ii.
Fig. 16 shows a comparison of T and n between the MM
shown in Fig. 5ii optimized for a single frequency, denoted
E1, and the MM shown in Fig. 15ii optimized for the three
frequencies f ∈ [2.85, 3.00, 3.15], denoted E3, both at the
incoming angle θ1 = 10o.
Considering the transmittance in Fig. 16i it is seen that it
oscillates for both E1 and E3. For E3 the oscillations have
peaks at the three frequencies for which the MM slab was
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(i) (ii)

Fig. 15: (i) Initial guess for a unit cell in the restricted design. (ii) Unit
cell in the final design for the example in section 7.3. Black is solid,
white is void and gray is an intermediate between solid and void.

(i)

(ii)

Fig. 16: (color online) Comparison of (i) Transmittance and (ii)
refractive index, including error bars denoting the uncertainty in n

stemming from the uncertainty in θ2,fit, for MM slab consisting of
22 × 12 unit cells seen in Fig. 5ii (E1) and a MM slab of 22 × 12

unit cells seen in Fig. 15ii (E3)as a function of frequency, f , for the
incident angle θ1 = 10o.

designed (as is to be expected). Calculating the average
transmittance from Fig. 16i across the frequency interval
f ∈ [2.85, 3.15] one gets 〈TE3〉 ≈ 0.960 and 〈TE1〉 ≈ 0.945

for the frequency band and single frequency optimization
respectively. An improvement of ≈ 0.015. If one considers
the worst case transmittance it has seen to improve from
min(TE1) ≈ 0.893 to min(TE3) ≈ 0.920. Regarding the
refractive index Fig. 16ii shows a reduction in the variation
of n with frequency as well as an overall improvement in
accuracy compared to the target ntarget = −1. Although the
accuracy at f = 3.0 has decreased by≈ 4%, it has increased

(i) (ii)

Fig. 17: (i) Initial guess for a unit cell in the restricted design. (ii) Unit
cell in the final design for the example in section 7.4. Black is solid,
white is void and gray is an intermediate between solid and void.

in the rest of the interval. At f = 3.15 the increase is≈ 40%

while at f = 2.85 the increase is between 6% and 38% when
the uncertainty in n, caused by the uncertainty in θ2,fit, is
taken into account.

7.4 Multiple Incoming Angles, ntarget = −0.5

The final example shows the design for an MM optimized
for ntarget = −0.5 and the angular range, θ1 ∈ [2.5o, 7.5o].
Three target angles θ1 ∈ {2.5o, 5.0o, 7.5o} are used in the
optimization. All other parameters are the same as those
used in the first example. The resulting design is presented
in Fig. 17ii. The dependence of T and n on incoming angle
and frequency is illustrated in Fig. 18. An illustration of
the field in and around the MM slab as a function of θ1 is
presented in Fig. 19. By comparing the field in Fig. 8 and
Fig. 19 the change in n for the two MM slabs is observed.

Fig. 18i shows T (θ1) for three equidistant frequencies in
the interval, f ∈ [2.85, 3.15]. T remains above 0.95 for
the frequencies f ∈ [2.85, 3.0] for θ1 ∈ [1.5o, 7.5o]. For
f = 3.15 the transmission quickly drops off. As for the first
examples this is in part due to some of the energy being
reflected from the interfaces of the MM and in part due to
nf=3.15 ≈ −0.25 which results in |θ2| growing quickly, in
turn resulting in part of the energy being refracted towards
the left side of the MM slab. Considering the refractive
index shown in Fig. 18ii for f ∈ {2.85, 3.00, 3.15}, it
is seen that n varies with both f and θ1 while remaining
negative across all investigated values. The variations in
n are larger with f than with θ1. Compared to the first
example the variations in both f and θ1 are slightly smaller
across the investigated range of θ1.
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(i)

(ii)

Fig. 18: (color online) (i) Transmittance and (ii) refractive index,
including error bars denoting the uncertainty in n stemming from the
uncertainty in θ2,fit, for MM slab consisting of 22 × 12 unit cells
containing the optimized design shown in Fig. 17ii as a function of
incident angle, θ1, for different frequencies.

Fig. 19: (color online) Amplitude of the solution, |ψ|, to the model
problem (1)-(3), in ΩT containing a MM slab of 22 × 12 unit cells
consisting of the optimized design in Fig. 17ii for three different
incident angles θ1 at the target frequency f = 3.0. (i) θ1 = 2.5o (ii)
θ1 = 5.0o (iii) θ1 = 7.5o.

8 Conclusions

A topology optimization based approach for designing meta
material slabs exhibiting a prescribed negative refraction
under illumination of a plane wave at a specified angle
of incidence and target frequency has been proposed.
Examples for varying refractive index, angle of incidence
and frequency demonstrated the method. An MM slab
exhibiting the targeted negative refraction to within ≈ 10%

error with high transmittance, T ≈ 0.98 for the targeted

angle of incidence and frequency was presented. It was
shown to be possible to increase the transmittance and
reduce the variation in n with incoming angle by taking
multiple angles into account in the design process. It was
also shown to be possible to improve the transmittance and
reduce the variation of n across a band of frequencies by
optimizing for multiple frequencies simultaneously. The
influence of uniform spatial variations of a design optimized
for θ1 ∈ {−5o,−10o,−15o} was investigated. While the
variations were found to have an impact on the designs
performance it was also found that the index of refraction
remained negative and the transmittance above ≈ 0.8 for
θ1 ∈ [−15o, 15o] for both the eroded and dilated versions of
the design.

The presented approach has the clear benefit that no
assumptions that reduce the physical model are imposed,
such as applying homogenization, assuming infinite
periodicity of the MM, assuming a given boundary
condition at the MM interface or considering only the
dominant mode inside the MM. On the contrary, the method
inherently accounts for edge effects and the more advanced
behavior of the field inside the MM. Thus it is expected
that any manufactured MMs, designed using the presented
approach, should directly function as predicted by the
simulation results.

Although the paper treats the acoustic case, the method is
directly applicable to both electromagnetic and elastic wave
problems by adjusting the relevant material parameters, α
and γ, the wave speed, c, and the spatial dimensions. As the
contrast in material parameters can be orders of magnitude
smaller for both electromagnetic and elastic shear waves, it
is the authors’ experience that the optimization problem is
less challenging in those cases.
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