554 research outputs found

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Masked mRNA is stored with aggregated nuclear speckles and its asymmetric redistribution requires a homolog of mago nashi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many rapidly developing systems rely on the regulated translation of stored transcripts for the formation of new proteins essential for morphogenesis. The microspores of the water fern <it>Marsilea vestita </it>dehydrate as they mature. During this process both mRNA and proteins required for subsequent development are stored within the microspores as they become fully desiccated and enter into senescence. At this point microspores become transcriptionally silent and remain so upon rehydration and for the remainder of spermatogenesis. Transcriptional silencing coupled with the translation of preformed RNA makes the microspore of <it>M. vestita </it>a useful system in which to study post-transcriptional regulation of RNA.</p> <p>Results</p> <p>We have characterized the distribution of mRNA as well as several conserved markers of subnuclear bodies within the nuclei of desiccating spores. During this period, nuclear speckles containing RNA were seen to aggregate forming a single large coalescence. We found that aggregated speckles contain several masked mRNA species known to be essential for spermatogenesis. During spermatogenesis masked mRNA and associated speckle proteins were shown to fragment and asymmetrically localize to spermatogenous but not sterile cells. This asymmetric localization was disrupted by RNAi knockdown of the <it>Marsilea </it>homolog of the Exon Junction Complex core component Mago nashi.</p> <p>Conclusions</p> <p>A subset of masked mRNA is stored in association with nuclear speckles during the dormant phase of microspore development in <it>M. vestita</it>. The asymmetric distribution of specific mRNAs to spermatogenous but not sterile cells mirrors their translational activities and appears to require the EJC or EJC components. This suggests a novel role for nuclear speckles in the post-transcriptional regulation of transcripts.</p

    Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are small, noncoding RNA molecules of 20 to 22 nucleotides that regulate gene expression by binding to their 3' untranslated region (3'UTR). Increasing data implicate altered miRNA participation in the progress of cancer. We previously reported that CYP2J2 epoxygenase promotes human cancer phenotypes. But whether and how CYP2J2 is regulated by miRNA is not understood. METHODS AND RESULTS: Using bioinformatics analysis, we found potential target sites for miRNA let-7b in 3'UTR of human CYP2J2. Luciferase and western blot assays revealed that CYP2J2 was regulated by let-7b. In addition, let-7b decreased the enzymatic activity of endogenous CYP2J2. Furthermore, let-7b may diminish cell proliferation and promote cell apoptosis of tumor cells via posttranscriptional repression of CYP2J2. Tumor xenografts were induced in nude mice by subcutaneous injection of MDA-MB-435 cells. The let-7b expression vector, pSilencer-let-7b, was injected through tail vein every 3 weeks. Let-7b significantly inhibited the tumor phenotype by targeting CYP2J2. Moreover, quantitative real-time polymerase chain reaction and western blotting were used to determine the expression levels of let-7b and CYP2J2 protein from 18 matched lung squamous cell cancer and adjacent normal lung tissues; the expression level of CYP2J2 was inversely proportional to that of let-7b. CONCLUSIONS: Our results demonstrated that the decreased expression of let-7b could lead to the high expression of CYP2J2 protein in cancerous tissues. These findings suggest that miRNA let-7b reduces CYP2J2 expression, which may contribute to inhibiting tumor phenotypes

    Long-term outcome and patterns of failure in patients with advanced head and neck cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To access the long-time outcome and patterns of failure in patients with advanced head and neck squamous cell carcinoma (HNSCC).</p> <p>Methods and materials</p> <p>Between 1992 and 2005 127 patients (median age 55 years, UICC stage III n = 6, stage IV n = 121) with primarily inoperable, advanced HNSCC were treated with definite platinum-based radiochemotherapy (median dose 66.4 Gy). Analysed end-points were overall survival (OS), disease-free survival (DFS), loco-regional progression-free survival (LPFS), development of distant metastases (DM), prognostic factors and causes of death.</p> <p>Results</p> <p>The mean follow-up time was 34 months (range, 3-156 months), the 3-, 5- and 10-year OS rates were 39%, 28% and 14%, respectively. The median OS was 23 months. Forty-seven patients achieved a complete remission and 78 patients a partial remission. The median LPFS was 17 months, the 3-, 5- and 10-year LPFS rates were 41%, 33% and 30%, respectively. The LPFS was dependent on the nodal stage (p = 0.029). The median DFS was 11 months (range, 2-156 months), the 3-, 5- and 10-year DFS rates were 30%, 24% and 22%, respectively. Prognostic factors in univariate analyses were alcohol abuse (n = 102, p = 0.015), complete remission (n = 47, p < 0.001), local recurrence (n = 71, p < 0.001), development of DM (n = 45, p < 0.001; median OS 16 months) and borderline significance in nodal stage N2 versus N3 (p = 0.06). Median OS was 26 months with lung metastases (n = 17). Nodal stage was a predictive factor for the development of DM (p = 0.025). Cause of death was most commonly tumor progression.</p> <p>Conclusions</p> <p>In stage IV HNSCC long-term survival is rare and DM is a significant predictor for mortality. If patients developed DM, lung metastases had the most favourable prognosis, so intensified palliative treatment might be justified in DM limited to the lungs.</p

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore