114 research outputs found

    Quantitative Relationships Between Basalt Geochemistry, Shear Wave Velocity, and Asthenospheric Temperature Beneath Western North America

    Get PDF
    ©2018. American Geophysical Union. All Rights Reserved. Western North America has an average elevation that is ∼2 km higher than cratonic North America. This difference coincides with a westward decrease in average lithospheric thickness from ∼240 to 260 basaltic samples. Forward and inverse modeling of carefully selected major, trace, and rare earth elements were used to determine melt fraction as a function of depth. Basaltic melt appears to have been generated by adiabatic decompression of dry peridotite with asthenospheric potential temperatures of 1340 ± 20 °C. Potential temperatures as high as 1365 °C were obtained for the Snake River Plain. For the youngest (i.e., <5 Ma) basalts with a subplate geochemical signature, there is a positive correlation between shear wave velocities and trace element ratios such as La/Yb. The significance of this correlation is explored by converting shear wave velocity into temperature using a global empirical parameterization. Calculated temperatures agree with those determined by inverse modeling of rare earth elements. We propose that regional epeirogenic uplift of western North America is principally maintained by widespread asthenospheric temperature anomalies lying beneath a lithospheric plate, which is considerably thinner than it was in Late Cretaceous times. Our proposal accounts for the distribution and composition of basaltic magmatism and is consistent with regional heat flow anomalies

    Extremely high He isotope ratios in MORB-source mantle from the proto-Iceland plume

    Get PDF
    The high &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He ratios yet recorded. A strong correlation between &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He and &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr, &lt;sup&gt;143&lt;/sup&gt;Nd/&lt;sup&gt;144&lt;/sup&gt;Nd and trace element ratios demonstrate that the &lt;sup&gt;3&lt;/sup&gt;He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a &lt;sup&gt;3&lt;/sup&gt;He-recharged depleted mantle (HRDM) reservoir may be the principal source of high &lt;sup&gt;3&lt;/sup&gt;He/&lt;sup&gt;4&lt;/sup&gt;He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure

    Volatiles and Intraplate Magmatism: a Variable Role for Carbonated and Altered Oceanic Lithosphere in Ocean Island Basalt Formation

    Get PDF
    Recycling of material at subduction zones has fundamental implications for melt composition and mantle rheology. Ocean island basalts (OIBs) sample parts of the mantle from variable depths that have been diversely affected by subduction zone processes and materials, including the subducted slab, metasomatising melts and fluids. Resultant geochemical differences are preserved at a variety of scales from melt inclusions to whole rocks, from individual islands to chains of islands. Here we examine a global dataset of ocean island basalt compositions with a view to understanding the connection between silica-saturation, olivine compositions, and halogens in glass and olivine-hosted melt inclusions to reveal information regarding the mantle sources of intraplate magmatism. We find that minor elements incorporated into olivine, although informative, cannot unambiguously discriminate between different source contributions, but indicate that none of the OIB analysed here are derived solely from dry peridotite melting. Nor can differences in lithospheric thickness explain trace element variability in olivine between different ocean islands. We present new halogen (F, Cl, Br/Cl, I/Cl) data along with incompatible trace element data for the global array and encourage measurement of fluorine along with heavier halogens to obtain better insight into halogen cycling. We suggest that Ti-rich silica-undersaturated melts require a contribution from carbonated lithosphere, either peridotite or eclogite and are an important component sampled by ocean island basalts, together with altered oceanic crust. These results provide new insights into our understanding of mantle-scale geochemical cycles, and also lead to the potential for the mantle transition zone as an underestimated source for observed volatile and trace-element enrichment in ocean island basalts

    Granites in Malaysia: from hard rock to clay minerals

    Get PDF
    Tropical areas with extreme climates are host to extreme weathering processes and the weathered materials are normally left in situ with the absence of large-scale denudation processes such as glaciations. This research tries to understand the behaviour of the weathered granites in Malaysia, from hard rock to the final products, the clay minerals. Grade 1 or fresh granites were sampled from different locations in Malaysia and analysed. The residual soil above the fresh granites, which were formed from the weathering activities were also analysed. The types of clay minerals and clay-sized particle grains found from two study locations were compared. The bases of the comparisons were index properties, strength properties and the mineralogical properties. The parent rocks were also analysed to obtain the origin of the minerals formed at the later stages of weathering. It was found that the strength of the soil mass formed from the weathering processes generally depend on the clay-sized particle grains rather than the types of clay minerals. It should however be noted that only halloysites and smectites clay minerals were observed in the samples obtained from the two study locations

    Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes

    Full text link
    The hypothesis that a single mushroom-like mantle plume head can generate a large igneous province within a few million years has been widely accepted(1). The Siberian Traps at the Permian Triassic boundary(2) and the Deccan Traps at the Cretaceous Tertiary boundary(3) were probably erupted within one million years. These large eruptions have been linked to mass extinctions. But recent geochronological data(4-11) reveal more than one pulse of major eruptions with diverse magma flux within several flood basalts extending over tens of million years. This observation indicates that the processes leading to large igneous provinces are more complicated than the purely thermal, single-stage plume model suggests. Here we present numerical experiments to demonstrate that the entrainment of a dense eclogite-derived material at the base of the mantle by thermal plumes can develop secondary instabilities due to the interaction between thermal and compositional buoyancy forces. The characteristic timescales of the development of the secondary instabilities and the variation of the plume strength are compatible with the observations. Such a process may contribute to multiple episodes of large igneous provinces.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62705/1/nature03697.pd

    GFS, a preparation of Tasmanian Undaria pinnatifida is associated with healing and inhibition of reactivation of Herpes

    Get PDF
    BACKGROUND: We sought to assess whether GFS, a proprietary preparation of Tasmanian Undaria pinnatifida, has effects on healing or re-emergence of Herpetic infections, and additionally, to assess effects of GFS in vitro. Undaria is the most commonly eaten seaweed in Japan, and contains sulphated polyanions and other components with potential anti-viral activity. Herpes simplex virus type 1 (HSV-1) infections have lower reactivation rates and Herpes type 2 (HSV-2) infections have lower incidence in Japan than in the west. METHODS: Patients with active (15 subjects) or latent (6 subjects) Herpetic infections (HSV-1, 2, EBV, Zoster) were monitored for response to ingestion of GFS. GFS extract was tested in vitro for human T cell mitogenicity and anti-Herpes activity. RESULTS: Ingestion of GFS was associated with increased healing rates in patients with active infections. In addition, patients with latent infection remained asymptomatic whilst ingesting GFS. GFS extract inhibited Herpes viruses in vitro and was mitogenic to human T cells in vitro. CONCLUSIONS: Ingestion of GFS has inhibitory effects on reactivation and is associated with increased rate of healing after Herpetic outbreaks. GFS extract potently inhibited Herpes virus in vitro, and had mitogenic effects on human T cells

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution

    How and when plume zonation appeared during the 132 Myr evolution of the Tristan Hotspot

    Get PDF
    Increasingly, spatial geochemical zonation, present as geographically distinct, subparallel trends, is observed along hotspot tracks, such as Hawaii and the Galapagos. The origin of this zonation is currently unclear. Recently zonation was found along the last B70 Myr of the Tristan-Gough hotspot track. Here we present new Sr–Nd–Pb–Hf isotope data from the older parts of this hotspot track (Walvis Ridge and Rio Grande Rise) and re-evaluate published data from the Etendeka and Parana flood basalts erupted at the initiation of the hotspot track. We show that only the enriched Gough, but not the less-enriched Tristan, component is present in the earlier (70–132 Ma) history of the hotspot. Here we present a model that can explain the temporal evolution and origin of plume zonation for both the Tristan-Gough and Hawaiian hotspots, two end member types of zoned plumes, through processes taking place in the plume sources at the base of the lower mantle
    corecore