3,829 research outputs found
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Spin qubits with electrically gated polyoxometalate molecules
Spin qubits offer one of the most promising routes to the implementation of
quantum computers. Very recent results in semiconductor quantum dots show that
electrically-controlled gating schemes are particularly well-suited for the
realization of a universal set of quantum logical gates. Scalability to a
larger number of qubits, however, remains an issue for such semiconductor
quantum dots. In contrast, a chemical bottom-up approach allows one to produce
identical units in which localized spins represent the qubits. Molecular
magnetism has produced a wide range of systems with tailored properties, but
molecules permitting electrical gating have been lacking. Here we propose to
use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be
coupled through the electrons of the central core. Via electrical manipulation
of the molecular redox potential, the charge of the core can be changed. With
this setup, two-qubit gates and qubit readout can be implemented.Comment: 9 pages, 6 figures, to appear in Nature Nanotechnolog
Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.
Validity of measures of pain and symptoms in HIV/AIDS infected households in resources poor settings: results from the Dominican Republic and Cambodia
BACKGROUND: HIV/AIDS treatment programs are currently being mounted in many developing nations that include palliative care services. While measures of palliative care have been developed and validated for resource rich settings, very little work exists to support an understanding of measurement for Africa, Latin America or Asia. METHODS: This study investigates the construct validity of measures of reported pain, pain control, symptoms and symptom control in areas with high HIV-infected prevalence in Dominican Republic and Cambodia Measures were adapted from the POS (Palliative Outcome Scale). Households were selected through purposive sampling from networks of people living with HIV/AIDS. Consistencies in patterns in the data were tested used Chi Square and Mantel Haenszel tests. RESULTS: The sample persons who reported chronic illness were much more likely to report pain and symptoms compared to those not chronically ill. When controlling for the degrees of pain, pain control did not differ between the chronically ill and non-chronically ill using a Mantel Haenszel test in both countries. Similar results were found for reported symptoms and symptom control for the Dominican Republic. These findings broadly support the construct validity of an adapted version of the POS in these two less developed countries. CONCLUSION: The results of the study suggest that the selected measures can usefully be incorporated into population-based surveys and evaluation tools needed to monitor palliative care and used in settings with high HIV/AIDS prevalence
Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection
Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher\u27s fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels
Operational approach to open dynamics and quantifying initial correlations
A central aim of physics is to describe the dynamics of physical systems.
Schrodinger's equation does this for isolated quantum systems. Describing the
time evolution of a quantum system that interacts with its environment, in its
most general form, has proved to be difficult because the dynamics is dependent
on the state of the environment and the correlations with it. For discrete
processes, such as quantum gates or chemical reactions, quantum process
tomography provides the complete description of the dynamics, provided that the
initial states of the system and the environment are independent of each other.
However, many physical systems are correlated with the environment at the
beginning of the experiment. Here, we give a prescription of quantum process
tomography that yields the complete description of the dynamics of the system
even when the initial correlations are present. Surprisingly, our method also
gives quantitative expressions for the initial correlation.Comment: Completely re-written for clarity of presentation. 15 pages and 2
figure
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
Quantum memory for entangled two-mode squeezed states
A quantum memory for light is a key element for the realization of future
quantum information networks. Requirements for a good quantum memory are (i)
versatility (allowing a wide range of inputs) and (ii) true quantum coherence
(preserving quantum information). Here we demonstrate such a quantum memory for
states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These
multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation
of squeezing and displaced by a few vacuum units. This range encompasses
typical input alphabets for a continuous variable quantum information protocol.
The memory consists of two cells, one for each mode, filled with cesium atoms
at room temperature with a memory time of about 1msec. The preservation of
quantum coherence is rigorously proven by showing that the experimental memory
fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best
possible classical memory for a range of displacements.Comment: main text 5 pages, supplementary information 3 page
The Kinematic Algebra From the Self-Dual Sector
We identify a diffeomorphism Lie algebra in the self-dual sector of
Yang-Mills theory, and show that it determines the kinematic numerators of
tree-level MHV amplitudes in the full theory. These amplitudes can be computed
off-shell from Feynman diagrams with only cubic vertices, which are dressed
with the structure constants of both the Yang-Mills colour algebra and the
diffeomorphism algebra. Therefore, the latter algebra is the dual of the colour
algebra, in the sense suggested by the work of Bern, Carrasco and Johansson. We
further study perturbative gravity, both in the self-dual and in the MHV
sectors, finding that the kinematic numerators of the theory are the BCJ
squares of the Yang-Mills numerators.Comment: 29 pages, 5 figures. v2: references added, published versio
Prediction of migratory routes of the invasive fall armyworm in eastern China using a trajectory analytical approach
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record BACKGROUND: The fall armyworm (FAW), an invasive pest from the Americas, is rapidly spreading through the Old World, and has recently invaded the Indochinese Peninsula and southern China. In the Americas, FAW migrates from winter-breeding areas in the south into summer-breeding areas throughout North America where it is a major pest of corn. Asian populations are also likely to evolve migrations into the corn-producing regions of eastern China, where they will pose a serious threat to food security. RESULTS: To evaluate the invasion risk in eastern China, the rate of expansion and future migratory range was modelled by a trajectory simulation approach, combined with flight behavior and meteorological data. Our results predict that FAW will migrate from its new year-round breeding regions into the two main corn-producing regions of eastern China (Huang-Huai-Hai Summer Corn and Northeast Spring Corn Regions), via two pathways. The western pathway originates in Myanmar and Yunnan, and FAW will take four migration steps (i.e. four generations) to reach the Huang-Huai-Hai Region by July. Migration along the eastern pathway from Indochina and southern China progresses faster, with FAW reaching the Huang-Huai-Hai Region in three steps by June and reaching the Northeast Spring Region in July. CONCLUSION: Our results indicate that there is a high risk that FAW will invade the major corn-producing areas of eastern China via two migration pathways, and cause significant impacts to agricultural productivity. Information on migration pathways and timings can be used to inform integrated pest management strategies for this emerging pest.Biotechnology & Biological Sciences Research Council (BBSRC)CABI Bioscienc
- …