554 research outputs found

    Clustering of tau-immunoreactive pathology in chronic traumatic encephalopathy

    Get PDF
    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease

    A disk of dust and molecular gas around a high-mass protostar

    Full text link
    The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars

    Fossil Carder Bee's nest from the Hominin locality of Taung, South Africa

    Get PDF
    The Buxton-Norlim Limeworks southwest of Taung, South Africa, is renowned for the discovery of the first Australopithecus africanus fossil, the ‘Taung Child’. The hominin was recovered from a distinctive pink calcrete that contains an abundance of invertebrate ichnofauna belonging to the Coprinisphaera ichnofacies. Here we describe the first fossil bee’s nest, attributed to the ichnogenus Celliforma, from the Plio-Pleistocene of Africa. Petrographic examination of a cell lining revealed the preservation of an intricate organic matrix lined with the calcitic casts of numerous plant trichomes–a nesting behaviour unique to the modern-day carder bees (Anthidiini). The presence of Celliforma considered alongside several other recorded ichnofossils can be indicative of a dry, savannah environment, in agreement with recent work on the palaeoenvironment of Plio-Pleistocene southern Africa. Moreover, the occurrence of ground-nesting bees provides further evidence that the pink calcrete deposits are of pedogenic origin, rather than speleogenic origin as has previously been assumed. This study demonstrates the potential value of insect trace fossils as palaeoenvironmental indicators

    An unusual case of an isolated capitellar fracture of the right elbow in a child: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although elbow fractures have a high incidence in the pediatric population, fractures of the capitellum are almost exclusively observed in individuals older than 12 years of age. Due to their rarity in children, reports with large numbers of cases are lacking in the literature and the surgical treatment options are poorly defined.</p> <p>Case presentation</p> <p>We present the case of an 11-year-old Portuguese girl with a displaced fracture of the capitellum of the right elbow, a typical Hahn-Steinthal or Type 1 fracture, which was followed for one year. The treatment and outcome of this fracture are described. Our patient underwent an open reduction and internal fixation with two cannulated screws. There were no complications and normal elbow function was recovered.</p> <p>Conclusion</p> <p>The authors believe that cannulated screw fixation is a reliable method of treatment for Type 1 capitellar fracture in children because it enables good interfragmentary compression, early mobilization, faster functional elbow recovery and implant removal is rarely necessary.</p

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    The Formation of the First Massive Black Holes

    Full text link
    Supermassive black holes (SMBHs) are common in local galactic nuclei, and SMBHs as massive as several billion solar masses already exist at redshift z=6. These earliest SMBHs may grow by the combination of radiation-pressure-limited accretion and mergers of stellar-mass seed BHs, left behind by the first generation of metal-free stars, or may be formed by more rapid direct collapse of gas in rare special environments where dense gas can accumulate without first fragmenting into stars. This chapter offers a review of these two competing scenarios, as well as some more exotic alternative ideas. It also briefly discusses how the different models may be distinguished in the future by observations with JWST, (e)LISA and other instruments.Comment: 47 pages with 306 references; this review is a chapter in "The First Galaxies - Theoretical Predictions and Observational Clues", Springer Astrophysics and Space Science Library, Eds. T. Wiklind, V. Bromm & B. Mobasher, in pres

    Ecosystem Resilience and Threshold Response in the GalĂĄpagos Coastal Zone

    Get PDF
    Background: The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr⁻Âč at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the GalĂĄpagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system?Methodology/Principal Findings: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (ÎŽ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, GalĂĄpagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat.Conclusions/Significance: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast and slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.</p
    • 

    corecore